博客

  • 兜兜转转还是WordPress适合建站

    看了Go和Java的诸多的建站的开源项目。

    从CMS到论坛,从社区到博客。

    最后还是wordpress更适合个人建站的需求。

    修改方便和稳定运行是最关键的。

  • AI助你笔下生辉光 – 助力创意写作的Weaver模型

    亲爱的创作者们,你是否也经常因为创作瓶颈而烦恼?想让文章更流畅优雅,让故事情节更丰富生动,让文案更具感染力,让创意像泉水一样涌流不止,但总是力不从心?别担心,人工智能正随着你的需要不断进步!🤖💡

    今天我要给大家介绍一项最新研究成果 – 名为Weaver的大型语言模型家族。这可能就是写作界期待已久的“石破天惊”之作!Weaver专门针对创意写作进行了优化设计,可以成为你最好的创作伙伴,让你的文字焕发出耀眼的光芒!🌟

    Weaver家族全面超越通用语言模型

    相比此前的通用语言模型如GPT系列,Weaver在创意写作方面取得了突破性进展。🔥

    • 学习强大的写作能力:Weaver使用了大量高质量创作类语料进行预训练,比如书籍、小说、故事、文章等,让它深入学习人类写作风格和创意。
    • 生成更人性化文本:通过指令回译和专家标注优化模型参数,Weaver可以生成更富有创造力和人情味的文本,而不仅仅是机械的组词造句。
    • 支持多样化写作场景:涵盖虚构、非虚构、技术写作等不同领域,适用于创作故事、社交媒体文案、博客文章等。
    • 可个性化写作辅助:支持调整个人写作风格,辅助编辑润色,提高写作效率。
    • 集成外部知识:可以查询知识库,将外部信息融入创作内容中。
    • 生成长文本:支持流畅生成超长篇幅的文字内容。
    • 多语言支持:同时支持中文和英文两种语言的写作任务。

    可以说,Weaver为创意写作开辟了崭新境界!

    评估结果凸显Weaver的卓越表现

    Weaver是否真的如此出色?为了给出定论,研究人员进行了全面的评测。

    • 构建了WriteBench基准,在多种写作场景中对Weaver和其他通用语言模型进行了测试。
    • 采用GPT-4作为评估者,对模型生成的作品进行打分评价。
    • 组织了44位专业作家进行人类评估,对比Weaver和代表性模型的文章质量。
    • 进行用户研究,5位专业作家使用Weaver和GPT-4进行创作,比较他们的体验。

    结果表明,在创造力、风格传达、主题相关性等方面,Weaver均明显优于其他模型,尤其擅长产生富有创意且贴近人类风格的作品。用户研究也证实Weaver可以提高写作效率和质量。

    综上所述,Weaver堪称新时代AI创意写作的“救世主”,其卓越表现已得到多方验证!👍

    WawaWriter – 人机共创的未来写作体验

    除了强大的模型之外,研究人员还设计了WawaWriter平台,这是一种全新的人机协同创作系统。😃

    它将Weaver的能力发挥到极致,为使用者提供前所未有的写作体验:

    • 💬 支持自然语言交互,输入写作需求和创意,获取AI创作助手的即时反馈。
    • 🎨 提供个性化写作辅助,可以调整生成内容的风格和语气。
    • 🔍 连接外部知识库,自动检索相关信息并融入创作。
    • 📝 支持无限长文本生成,流畅组织段落和章节,自动进行智能推敲。
    • 🤝 极大提升人机协作效率,用户可以集中注意力进行创作。
    • 🔧 提供便捷的文本编辑和管理功能。

    可以预见,这种新型协同创作系统会彻底改变我们的创作方式。想想看,有了WawaWriter这样智能的AI助手,你的创作效率会提升几何倍,创作瓶颈和痛点将一扫而空!

    未来,写作或许将不再是一个孤独的过程,而是一个由人和AI共同完成的艺术创造。🤝 充满乐趣与可能!

    加入Weaver与WawaWriter,开创创作新纪元

    Weaver和WawaWriter无疑是创意写作领域的重磅产品,它们极大拓展了AI在辅助创作方面的应用前景。💡

    • 对于作家和内容创作者来说,这是提升创作力的强大工具。
    • 对于出版商和平台来说,这是拓展创意内容的重要途径。
    • 对于AI研究者来说,这开辟了语言模型个性化的新方向。
    • 对于所有热爱写作的人来说,这是实现创作梦的绝佳伙伴。

    我衷心期待Weaver和WawaWriter尽快与大众见面,让更多创作者受益,共同开启人机合作写作的新纪元!如果你也对此充满兴趣,欢迎在评论区分享你的想法!

    未来可期,创造无限!让我们继续期待AI为创意写作带来的更多惊喜吧!

  • Tuning Language Models by Proxy

    近年来,预训练语言模型在自然语言处理Tasks表现突出,但直接进行Fine-tuning往往需要大量计算资源。所以研究人员提出了一种非常巧妙的方法,可以在解码阶段进行模型微调,避免修改庞大模型的内部权重👍

    代理微调:无需进入模型内部就可定制化

    代理微调的核心思路是:

    • 选择一个小型的语言模型,进行任务专属的Fine-tuning,得到一个专家模型🧑‍🏫
    • 在运行大模型生成文本时,引入这个专家模型的输出,对大模型的词向量进行简单调整💪
    • 就像一个代理老师,在不进入班级的情况下,通过辅导学生来提高全班的水平📈

    这样,代理微调可以在解码阶段轻松地定制大型语言模型,无需直接访问复杂的内部结构。相比直接Fine-tuning,它更加高效和可控!

    实验验证:性能几乎赶超直接微调

    研究人员对代理微调进行了全面的评估:

    • 在任务型指令遵循方面,代理微调提高了大模型对指令的执行准确率,逼近直接微调的效果
    • 在代码生成任务上,代理微调也带来显著改进,有助于生成更精准的代码
    • 在问答、数学运算等具体任务上,代理微调同样产生强大的优化效果

    可以说,不入内部就能取得如此卓越的提升,代理微调可谓 bargain之选!

    展望:轻装上阵,微调之新方法

    代理微调为我们带来了巨大的启发:

    • 小型模型也可以在某些方面教会大模型,开启新的微调思路
    • 解码阶段的调控操作,提供了更精细的输出定制化手段
    • 避开内部细节,或许是未来模型调优的新方向

    相信随着理论与工程结合,语言模型的应用前景将更加广阔。让我们一起见证这个迸发火花的领域吧!

  • Deductive Closure Training of Language Models for Coherence, Accuracy, and Updatability

    最近读到一篇非常有意思的AI论文,提出了一种新的方法来提高语言模型的可靠性。这项技术被称为Deductive Closure Training(DCT),它采用了与众不同的训练方式,能够显著改善语言模型生成内容的准确性和一致性。那么这项技术是如何做到的呢?让我为大家详细介绍一下🧐:

    为何需要Deductive Closure Training

    目前的语言模型🌐存在以下问题:

    • 事实错误✖️:有时会生成自相矛盾或与事实不符的内容
    • 缺乏一致性❌:不同部分之间存在逻辑冲突
    • 难以更新➕:很难用新信息来更新模型

    这导致了语言模型生成的文本可靠性较差。为了解决这一难题,研究人员提出了DCT方法。

    Deductive Closure Training的技术原理🔧

    DCT的核心思路是,在训练过程中✏️,利用语言模型自己的推理能力🧠,来改进其生成内容的准确性和一致性。主要包含以下步骤:

    • 文档生成🚩:使用语言模型根据已有文档,生成更多相关文档
    • 一致性评估🔍:评估所有文档,找出逻辑上最可能成立的一致文档子集
    • 模型微调🔧:仅用一致的文档子集进行模型的参数调整

    通过这种方式,可以有效提升语言模型的事实性和逻辑一致性,无需额外的监督数据。

    DCT技术的实验验证🧪

    为了验证DCT的效果,论文进行了以下实验:

    • 事实验证:DCT可以提高模型判断事实正误的能力
    • 问答:DCT可以帮助模型更好地回答基于新信息的问题
    • 一致性检查:DCT能增强模型学习简单逻辑推理的能力

    结果表明,DCT技术可以显著改善语言模型的可靠性,在不同的场景和任务中都取得了进步。

    DCT技术的未来展望🔭

    尽管DCT已展示出巨大的潜力,但这项技术还有很多值得进一步探索的方向:

    • 更复杂的推理任务🎯
    • 优化种子文档的选择📑
    • 结合多样化的微调目标💡
    • 提高跨语言和跨领域泛化能力🌏
    • 增强模型的可解释性🔍
    • 关注技术的安全性和伦理性🛡
    • 与其他方法相结合👥

    我相信,随着相关研究的深入,DCT必将大幅提升语言模型的智能水平,使其生成的内容更加准确可靠。这项突破性技术给语言模型的发展带来了新的曙光。让我们一起期待DCT后续的研究进展吧!

  • AI技术的新突破:复旦研究团队大幅提升模型上下文理解能力

    当我们在浩瀚的信息海洋中航行时,AI技术的飞速发展无疑是我们的罗盘和风帆。最近,复旦大学和上海人工智能实验室的研究团队带来了一股劲风,他们的新发现让AI模型在理解长篇上下文方面能力大幅跃升,这对自然语言处理(NLP)领域可谓是一场革命。

    💡RoPE位置编码的魔法

    首先,我们得知道一个概念——RoPE(Rotary Position Embedding)。简而言之,位置编码就是在AI模型中嵌入位置信息的一种技术,而RoPE则是一种特殊的位置编码方式。它透过旋转的方式,将位置信息编入模型。你可以想象成,每一个单词都通过旋转一个角度来表示其在句子中的位置,这样模型就能理解单词之间的顺序关系。

    🚀上下文长度暴涨至100万tokens

    复旦的研究团队发现,通过微调RoPE位置编码中的一个超参数——旋转角底数(base),可以显著提升模型的上下文长度。简单来说,就是让AI能够一口气理解长达100万tokens(语言处理中的基本单位)的内容。想象一下,这就好比原本阅读能力仅限于一篇短文的AI,突然能够流畅地阅读整部《红楼梦》。

    🔍RoPE外推缩放法则

    研究团队还提出了一套RoPE外推的缩放法则。这套法则能够帮助我们预测模型在不同长度的文本上的表现,并据此调整旋转角底数来提升模型的外推能力。这就像是为AI模型装上了一个可以根据不同海域调整的舵,无论是平静湖面还是波涛汹涌的大海,它都能稳稳地航行。

    🌟LLaMA2模型的革新

    复旦的研究不仅理论上让人兴奋,还在实践中展现了成果。他们的这项技术被用于LLaMA2模型,将其上下文长度从原本的1.6万tokens扩展到了100万tokens,这为处理更复杂的语言任务提供了可能。

    📚更多潜力的解锁

    这项技术的潜力是巨大的。在自然语言处理领域,无论是机器翻译、文本摘要还是问答系统,长篇上下文的理解能力都是关键。复旦研究团队的这一突破,为我们打开了新的大门,让AI在理解和生成自然语言方面,更加像人类。

    🔗研究资源链接

    对这项技术感兴趣的朋友,可以通过以下链接进一步探索:

  • FP8-LM: Training FP8 Large Language Models 探索FP8低精度训练:大型语言模型(LLMs)的新篇章

    这篇论文探索了使用8位浮点数(FP8)来有效训练大型语言模型(LLM)。论文的主要贡献和要点总结如下:

    1. 提出了一个新的FP8混合精度训练框架,可以分阶段地引入8位梯度、优化器状态和分布式训练,逐步发挥FP8的优势,降低训练成本。
    2. 在这个框架下,实现了8位梯度交流、8位优化器和8位并行训练。具体来说:
    • 为FP8梯度交流设计了自动缩放技术,解决了低位交流中的上下溢问题。
    • 实现了FP8优化器,通过精度解耦找到哪些变量更适合低精度表达。
    • 在张量并行、流水线并行和序列并行中支持FP8,降低激活传递的通信量。
    1. 在7B到175B参数规模的GPT模型上验证了该FP8训练方案的效果。结果显示,相比BF16训练,FP8训练可以显著降低GPU内存占用(29%~39%)、权重相关通信量(63%~65%),并提高吞吐量。模型性能不受影响。
    2. 将FP8训练应用到GPT模型的微调上,包括教学调整和强化学习。结果同样展现出计算和内存上的节约。
    3. 通过大量的分析实验对FP8训练的设计选择进行了验证,为后续研究提供了指导性结论。
    4. 本文是第一个将FP8计算、存储和通信全面渗透到大模型训练 entire pipeline 的工作,可视为推动下一代低精度训练系统的重要一步。

    本文对利用FP8进行大规模语言模型的高效低精度训练做出了重要探索,在减少训练成本方面展现出令人鼓舞的潜力。论文的贡献具有重要的理论和实践价值。

  • Human-in-the-Loop Policy Optimization for Preference-Based Multi-Objective Reinforcement Learning

    Q: 这篇论文试图解决什么问题?

    A: 这篇论文旨在解决多目标强化学习(MORL)中的一个重要问题:如何在决策者(DM)有限的偏好信息下,通过人机交互的方式,有效地优化出符合DM偏好的策略。具体来说,论文提出了一个名为CBOB的框架,该框架通过以下三个方面来解决上述问题:

    1. 种子策略生成:通过分解多目标优化问题,生成一组近似帕累托前沿(Pareto front)的种子策略,为后续的偏好学习提供起点。
    2. 偏好信息学习:通过DM与算法的交互,收集DM对策略的偏好反馈,学习出能够反映DM偏好的模型。
    3. 策略优化:利用学习到的偏好信息,指导策略优化过程,使得优化过程更加倾向于DM感兴趣的策略。

    论文的核心贡献在于提出了一个能够在没有先验偏好信息的情况下,通过与DM的交互来学习其偏好,并将这些偏好信息用于指导策略优化的方法。这种方法在处理具有高维状态和动作空间的复杂环境中特别有效,并且其模块化的设计允许在不同配置下灵活应用。

    Q: 有哪些相关研究?

    A: 这篇论文涉及的相关研究领域包括多目标强化学习(MORL)、偏好学习、人机交互以及多目标优化。以下是一些与这些领域相关的研究:

    1. 多目标强化学习 (MORL):
      • 线性标量化方法,如[5, 6],通过加权不同目标函数来简化多目标问题。
      • 多策略MORL方法,如[7-9],通过分解问题并分别解决子问题来发现帕累托最优策略。
      • 交互式MORL,如[10],通过与决策者(DM)的交互来学习其偏好。
    2. 偏好学习:
      • 偏好学习在逆强化学习(IRL)中的应用,如[27-29],通过观察演示来学习奖励函数。
      • 偏好学习在MORL中的应用,如[17, 34, 35],通过DM的反馈来学习效用函数。
    3. 人机交互:
      • 人机交互在MORL中的应用,如[13, 25],通过与DM的互动来学习其偏好。
      • 在进化多目标优化和多准则决策(MCDM)中的应用,如[36-45],通过偏好信息来指导优化过程。
    4. 多目标优化:
      • 多目标进化算法(MOEA),如[47-55],通过分解方法来处理多目标优化问题。
      • 多目标优化在实际问题中的应用,如[36-45],通过偏好信息来指导优化过程。

    这些研究为理解多目标强化学习、偏好学习以及人机交互在决策过程中的作用提供了理论基础和实践经验。论文提出的CBOB框架结合了这些领域的研究成果,旨在通过人机交互来优化策略,使其更符合决策者的偏好。

    Q: 论文如何解决这个问题?

    A: 论文提出了一个名为CBOB(Concurrent Bayesian Optimization-Based Multi-Objective Reinforcement Learning)的框架来解决在多目标强化学习(MORL)中如何通过人机交互来优化策略的问题。CBOB框架包含三个核心模块:

    1. 种子策略生成(Seeding)
      • 使用多目标进化算法(MOEA/D)的分解方法来生成一组种子策略,这些策略近似于帕累托前沿(Pareto front),为后续的偏好学习提供起点。
    2. 偏好信息学习(Preference Elicitation)
      • 设计了一个交互界面,让决策者(DM)对策略进行比较并提供反馈。
      • 使用高斯过程(GP)作为回归模型来学习DM的偏好信息,该模型能够根据DM的反馈来评估策略的质量。
    3. 策略优化(Policy Optimization)
      • 利用学习到的偏好信息来指导策略优化过程,使用近端策略优化(PPO)算法来优化策略。
      • 在优化过程中,通过调整权重向量来引导策略搜索,使得优化过程更加倾向于DM感兴趣的策略区域。

    CBOB框架通过迭代地在偏好信息学习模块和策略优化模块之间进行交互,直到满足停止条件。这个过程允许算法逐步学习DM的偏好,并优化出符合DM偏好的策略。通过在MuJoCo环境和多微电网系统设计问题上的实验,论文证明了CBOB框架的有效性和竞争力。

    Q: 论文做了哪些实验?

    A: 论文在两个不同的领域进行了实验,以验证所提出的CBOB框架的有效性。这些实验包括:

    1. MuJoCo环境
      • 选择了七个MuJoCo环境中的强化学习任务,包括Ant-v2, HalfCheetah-v2, Hopper-v2, Humanoid-v2, Swimmer-v2, Walker2d-v2和Hopper-v3。
      • 这些任务涵盖了不同的目标函数和搜索空间,用于测试CBOB在不同环境下的性能。
    2. 多微电网系统设计(MMSD)问题
      • MMSD问题是一个复杂的多目标优化问题,涉及三个目标:电力网的效用价值、微电网的总效用价值以及系统的总能量存储。
      • 这个环境用于测试CBOB在实际工程问题中的应用效果。

    在这些实验中,论文将CBOB与以下算法进行比较:

    • 常规MORL算法:包括RA, PGMORL和MOIA,这些算法不考虑DM的偏好信息。
    • 偏好基MORL算法:包括MORL-Adaptation, META-MORL, MOMPO和MORAL,这些算法旨在通过学习DM的偏好来优化策略。

    实验使用以下性能指标来评估算法:

    • 近似精度(Approximation Accuracy):衡量最优非支配策略与DM偏好策略之间的接近程度。
    • 平均精度(Average Accuracy):衡量所有非支配策略与DM偏好策略之间的平均接近程度。

    通过这些实验,论文展示了CBOB在不同环境下的性能,并与现有的MORL算法进行了比较。实验结果表明,CBOB能够有效地学习DM的偏好,并优化出符合DM偏好的策略。

    Q: 有什么可以进一步探索的点?

    A: 论文提出了一个创新的框架CBOB,用于在多目标强化学习中结合人类偏好进行策略优化。尽管实验结果表明CBOB在多个环境中表现出了有效性,但仍有许多潜在的研究方向可以进一步探索:

    1. 交互式偏好学习
      • 研究更多样化的偏好表达方式,例如模糊偏好、动态偏好等。
      • 开发更高效的用户交互界面和机制,以降低用户的认知负担并提高交互效率。
    2. 算法的泛化能力
      • 在更复杂、高维的环境中测试CBOB的性能,例如具有非凸Pareto前沿的问题。
      • 研究CBOB在不同类型强化学习任务(如离散动作空间、部分可观察环境)中的适用性。
    3. 偏好模型的改进
      • 探索使用其他类型的模型(如神经网络)来学习偏好信息。
      • 研究如何结合先验知识和在线学习来提高偏好模型的准确性。
    4. 策略优化算法的适应性
      • 研究如何将CBOB与其他策略优化算法(如Q-learning、Actor-Critic方法)相结合。
      • 探索在策略优化过程中如何平衡探索与利用,以加速收敛到最优策略。
    5. 约束条件的处理
      • 在多目标优化问题中考虑约束条件,特别是在约束条件部分可观测的情况下。
      • 开发新的算法来处理具有约束的多目标强化学习问题。
    6. 可解释性和透明度
      • 研究如何提高策略的可解释性,使DM能够理解并信任AI生成的策略。
      • 探索如何将偏好学习的结果与人类价值观和道德标准相结合。
    7. 实际应用
      • 将CBOB框架应用于实际的多目标决策问题,如智能电网管理、机器人控制等。
      • 研究如何将CBOB与其他领域(如自然语言处理、软件工程)中的问题结合起来。

    这些研究方向不仅能够推动多目标强化学习领域的发展,还有助于实现更智能、更人性化的AI系统。

  • TinyGPT-V: Efficient Multimodal Large Language Model via Small Backbones

    Q: 这篇论文试图解决什么问题?

    A: 这篇论文试图解决的主要问题是开发一个既高效又强大的多模态大型语言模型(MLLM),可以在不需要大量计算资源的情况下进行训练和推理。具体来说,论文提出了一个名为TinyGPT-V的模型,它结合了一个小的但有效的语言模型(Phi-2)和预训练的视图模块(BLIP-2或CLIP),以在各种视觉语言任务上实现与更大模型相当的性能,同时只需要24GB的GPU进行训练,8GB的GPU或CPU进行推理。论文的主要贡献是提出了一种新的多模态大型语言模型的构建范式,即使用小的骨干网络(small backbones)来实现高效的多模态理解和生成。论文的目标是推动设计成本效益高、效率高且性能优越的MLLMs,以在广泛的现实世界场景中应用。

    Q: 有哪些相关研究?

    A: 这篇论文提到了以下几类相关研究:

    1. 大型语言模型:论文提到了GPT-2、BERT等早期成功的语言模型,以及后来的更大模型如GPT-3、Chinchilla、OPT、BLOOM等。特别是Phi模型及其改进版Phi-2,这些模型在较小规模下实现了与更大模型相当的性能。
    2. 多模态语言模型:论文提到了VisualGPT、Frozen等早期将视觉输入与语言模型结合的工作,以及后来的Flamingo、BLIP-2等更先进的架构。还有LLaVA、MiniGPT-4等开源的多模态模型,它们通过指令微调等技术在视觉问答等任务上取得了很好的效果。
    3. 小型多模态模型:论文提出了TinyGPT-V,这是一个计算效率高的多模态模型,可以在有限的计算资源下进行训练和部署。与之相比,其他多模态模型如LLaVA-v1.5-13B、MiniGPT-v2等需要更多的计算资源。
    4. 训练稳定化技术:为了解决小规模多模态模型训练中的稳定性问题,论文采用了LayerNorm、RMSNorm、Query-Key Normalization等技术。这些技术在其他工作中也有应用,如LoRA方法。
    5. 多任务学习:论文提出了一种多任务指令模板来指导模型的训练,这借鉴了LLaMA-2的对话模板。多任务学习在其他模型如BLIP-2、MiniGPT-4中也有应用。

    总体来说,这篇论文在大型语言模型、多模态模型、模型训练稳定化技术等方面的现有研究基础上,提出了一种新的计算高效的多模态模型构建方式。

    Q: 论文如何解决这个问题?

    A: 论文通过以下几个关键点来解决开发计算高效且功能强大的多模态大型语言模型(MLLM)的问题:

    1. 使用小型但有效的语言模型:论文选择了Phi-2作为语言模型的骨干网络。Phi-2是一个较小的模型,但已经证明在许多自然语言处理任务中可以与大25倍的模型相媲美。这样可以显著减少模型参数数量和计算需求,同时保持强大的语言理解能力。
    2. 预训练的视图模块:论文利用了BLIP-2或CLIP中的预训练视觉编码器。这些编码器已经在大规模的图像-文本数据集上进行了训练,能够捕捉丰富的视觉特征。通过冻结这些预训练参数,只需要对较小的线性投影层进行训练以适配语言模型,进一步降低了训练负担。
    3. 多阶段训练过程:论文提出了一个多阶段的训练过程,包括预热训练、预训练、指令微调以及多任务学习。这种分阶段的方法允许模型逐步适应多模态输入,并在每个阶段专注于特定的学习目标,提高了训练效率和最终性能。
    4. 训练稳定化技术:为了解决小规模多模态模型训练中的稳定性问题,论文采用了LayerNorm、RMSNorm和Query-Key Normalization等技术。这些技术有助于防止梯度消失或爆炸,并允许更稳定的优化过程。
    5. 多任务指令模板:通过使用包含任务特定标记的统一指令模板,论文的方法可以明确地处理不同的视觉语言任务,减少了训练过程中的歧义,并允许更准确的任务执行。
    6. 量化和设备兼容性:论文指出TinyGPT-V的参数可以通过量化处理,使其适合在只有8GB内存的设备上进行推理,显著扩大了模型的可用性。

    通过上述方法,论文成功地在有限的计算资源下训练了一个多模态大型语言模型TinyGPT-V,该模型在多个视觉语言任务上展现出了与更大模型相竞争的性能。这代表了在设计成本效益高、效率高且功能强大的MLLMs方面的显著进步。

    Q: 论文做了哪些实验?

    A: 论文中进行了以下实验来评估和验证TinyGPT-V模型的性能:

    1. 训练过程:论文详细描述了TinyGPT-V模型的四个阶段训练过程,包括每个阶段的数据集、学习率调度、训练损失等。通过逐步训练,模型从对图像模态输入的初步理解,到能够生成自然语言描述,再到执行多模态任务。
    2. 评估数据集:论文使用了多个视觉问答数据集来评估TinyGPT-V的性能,包括GQA、VSR、IconQA、VizWiz和Hateful Memes等。这些数据集涵盖了不同类型的视觉理解和推理任务。
    3. 结果比较:论文将TinyGPT-V的性能与其他几种最先进的多模态语言模型进行了比较,如BLIP-2、LLaVA、Shikra、InstructBLIP和MiniGPT-4。比较了各模型在不同基准测试中的准确率和零样本学习能力。
    4. 消融研究:为了验证模型中各个组件的重要性,论文进行了消融研究,即逐个移除模型的关键部分(如LoRA模块、输入层归一化、RMSNorm、Query-Key归一化等),观察训练损失的变化。这有助于理解每个组件在防止梯度消失和维持低损失中的作用。

    通过这些实验,论文展示了TinyGPT-V在参数效率和多模态任务性能方面的优势,证明了所提方法的有效性。

    Q: 有什么可以进一步探索的点?

    A: 基于这篇论文,有以下几个可能的进一步探索方向:

    1. 模型压缩和优化:尽管TinyGPT-V已经比许多其他模型参数更少,但仍有可能通过知识蒸馏、网络剪枝等技术进一步压缩模型大小,同时尽量保持其性能。
    2. 增强的预训练数据:论文使用了现有的一些图像-文本对数据集进行预训练。研究更多样化、更大规模或特定领域的预训练数据集可能有助于模型学习更强的通用视觉表示。
    3. 多模态理解的深度:虽然TinyGPT-V在多个视觉问答数据集上表现良好,但可以进一步探索模型在更复杂的多模态推理任务上的性能,例如需要更长的推理链或更丰富视觉场景理解的任务。
    4. 实时交互能力:论文主要关注了TinyGPT-V的离线性能。研究如何使模型能够进行实时交互,例如在对话系统中自然地回应用户,将是有趣的方向。
    5. 跨模态生成任务:论文集中在视觉问答等理解任务上。可以探索模型在图像描述、图像生成等跨模态生成任务上的性能和潜力。
    6. 模型泛化性和鲁棒性:评估TinyGPT-V在面对分布变化、对抗样本或噪声输入时的鲁棒性,可以提供关于模型泛化能力的见解。
    7. 计算效率的极限:研究是否可以通过算法优化、专用硬件加速等方式进一步减少TinyGPT-V的推理延迟,使其适用于更多资源受限的环境。
    8. 多语言和多文化能力:探索模型在处理多语言和不同文化视觉内容时的表现,以及如何通过多语言预训练来提升这些能力。

    通过这些方向的探索,可以持续改进TinyGPT-V及其同类模型,扩展它们的应用范围并解决实际世界中的更多问题。

    Q: 总结一下论文的主要内容

    A: 这篇论文介绍了TinyGPT-V,这是一个计算效率高且功能强大的多模态大型语言模型(MLLM)。以下是论文的主要内容总结:

    背景:现有的多模态大型语言模型(如GPT-4V)在视觉和语言任务上表现出色,但它们通常是闭源的,需要大量计算资源。相比之下,一些开源的MLLM(如LLaVA和MiniGPT-4)在某些任务上超越了GPT-4V,但它们仍然需要大量计算资源。因此,需要开发既高效又强大的MLLM。

    贡献:论文提出了TinyGPT-V,它只需要24GB GPU进行训练,8GB GPU或CPU进行推理。TinyGPT-V结合了小型但强大的语言模型Phi-2和预训练的视图模块(BLIP-2或CLIP)。它有28亿参数,可以通过量化适应于在8GB设备上部署和推理。

    方法

    • 模型架构:TinyGPT-V包括一个视觉编码器(基于ViT)、线性投影层和一个语言模型骨干网络(Phi-2)。为了提高训练稳定性,论文采用了LayerNorm、RMSNorm和Query-Key Norm等技术。
    • 多任务指令模板:使用MiniGPT-v2的特定任务标记来指导模型处理不同的视觉语言任务,如视觉问答、图像描述等。
    • 训练阶段:TinyGPT-V的训练分为四个阶段,包括预热训练、预训练、指令微调和多任务学习。

    实验:论文在多个视觉问答数据集上评估了TinyGPT-V,结果显示它在参数少得多的情况下与拥有130亿参数的模型表现相当。此外,通过消融研究,论文验证了模型中每个组件的重要性。

    结论:TinyGPT-V代表了在设计成本效益高、效率高且功能强大的MLLM方面的显著进步。论文的工作有助于推动更多适用于现实世界场景的紧凑型MLLM的发展。

    论文还提出了一种新的构建多模态大型语言模型的范式,即使用小型骨干网络,并开源了代码和训练权重以促进进一步研究。

  • PromptFlow运行遇到pydantic导入报错

    pip install pydantic==1.10
    执行上面的指令安装 1.10 系列版本的 pydantic即可。
    开源库的各种版本依赖关系是一个非常容易出错的点。
    
    

    例如如果遇到这样的报错:

    pf -v
    Traceback (most recent call last):
      File "C:\anaconda3\lib\runpy.py", line 196, in _run_module_as_main        
        return _run_code(code, main_globals, None,
      File "C:\anaconda3\lib\runpy.py", line 86, in _run_code
        exec(code, run_globals)
      File "C:\Users\linke\AppData\Roaming\Python\Python310\Scripts\pf.exe\__main__.py", line 4, in <module>
      File "C:\Users\linke\AppData\Roaming\Python\Python310\site-packages\promptflow\__init__.py", line 14, in <module>
        from ._sdk._pf_client import PFClient
      File "C:\Users\linke\AppData\Roaming\Python\Python310\site-packages\promptflow\_sdk\_pf_client.py", line 15, in <module>
        from .operations import RunOperations
      File "C:\Users\linke\AppData\Roaming\Python\Python310\site-packages\promptflow\_sdk\operations\__init__.py", line 7, in <module>
        from ._run_operations import RunOperations
      File "C:\Users\linke\AppData\Roaming\Python\Python310\site-packages\promptflow\_sdk\operations\_run_operations.py", line 29, in <module>
        from promptflow._sdk.operations._local_storage_operations import LocalStorageOperations
      File "C:\Users\linke\AppData\Roaming\Python\Python310\site-packages\promptflow\_sdk\operations\_local_storage_operations.py", line 34, in <module>    
        from promptflow.batch._result import BatchResult
      File "C:\Users\linke\AppData\Roaming\Python\Python310\site-packages\promptflow\batch\__init__.py", line 6, in <module>
        from ._base_executor_proxy import AbstractExecutorProxy, APIBasedExecutorProxy
      File "C:\Users\linke\AppData\Roaming\Python\Python310\site-packages\promptflow\batch\_base_executor_proxy.py", line 19, in <module>
        from promptflow.executor._result import AggregationResult, LineResult   
      File "C:\Users\linke\AppData\Roaming\Python\Python310\site-packages\promptflow\executor\__init__.py", line 6, in <module>
        from .flow_executor import FlowExecutor
      File "C:\Users\linke\AppData\Roaming\Python\Python310\site-packages\promptflow\executor\flow_executor.py", line 22, in <module>
        from promptflow._core.openai_injector import inject_openai_api
      File "C:\Users\linke\AppData\Roaming\Python\Python310\site-packages\promptflow\_core\openai_injector.py", line 11, in <module>
        import openai
      File "C:\Users\linke\AppData\Roaming\Python\Python310\site-packages\openai\__init__.py", line 8, in <module>
        from . import types
      File "C:\Users\linke\AppData\Roaming\Python\Python310\site-packages\openai\types\__init__.py", line 5, in <module>
        from .edit import Edit as Edit
      File "C:\Users\linke\AppData\Roaming\Python\Python310\site-packages\openai\types\edit.py", line 6, in <module>
        from .._models import BaseModel
      File "C:\Users\linke\AppData\Roaming\Python\Python310\site-packages\openai\_models.py", line 18, in <module>
        import pydantic
      File "pydantic\__init__.py", line 2, in init pydantic.__init__
      File "pydantic\dataclasses.py", line 43, in init pydantic.dataclasses     
        # | <blank> | No action: no method is added.          |
      File "C:\Users\linke\AppData\Roaming\Python\Python310\site-packages\pydantic\class_validators.py", line 2, in <module>
        from ._migration import getattr_migration
      File "C:\Users\linke\AppData\Roaming\Python\Python310\site-packages\pydantic\_migration.py", line 4, in <module>
        from .version import version_short
    ImportError: cannot import name 'version_short' from 'pydantic.version' (C:\Users\linke\AppData\Roaming\Python\Python310\site-packages\pydantic\version.cp310-win_amd64.pyd)

  • YAYI2 模型

    YAYI2 模型是一款开源大语言模型。它采用了超过 2 万亿 Tokens 的高质量、多语言语料进行预训练[1]。YAYI2-30B 是 YAYI2 模型的一个版本,它是基于 Transformer 架构的大语言模型,参数规模为 30B。该模型通过百万级指令进行微调,并借助人类反馈强化学习方法,以更好地使模型与人类价值观对齐[2]

    以下是 YAYI2-30B 模型的一些细节:

    • n_layers: 64
    • n_heads: 64
    • hidden_size: 7168
    • vocab_size: 81920
    • sequence length: 4096[2]

    要使用 YAYI2-30B 模型,您需要满足以下要求:

    • Python 3.8 及以上版本
    • PyTorch 2.0.1 及以上版本
    • 建议使用 CUDA 11.7 及以上版本
    • 运行 BF16 或 FP16 模型需要至少 80GB 显存(例如 1xA100)[2]

    您可以使用 Hugging Face 的 Transformers 库来快速开始使用 YAYI2-30B 模型。下面是一个快速开始的示例代码:

    from transformers import AutoModelForCausalLM, AutoTokenizer
    
    tokenizer = AutoTokenizer.from_pretrained("wenge-research/yayi2-30b", trust_remote_code=True)
    model = AutoModelForCausalLM.from_pretrained("wenge-research/yayi2-30b", device_map="auto", trust_remote_code=True)
    
    inputs = tokenizer('The winter in Beijing is', return_tensors='pt')
    inputs = inputs.to('cuda')
    
    pred = model.generate(
        **inputs, 
        max_new_tokens=256, 
        eos_token_id=tokenizer.eos_token_id, 
        do_sample=True,
        repetition_penalty=1.2,
        temperature=0.4, 
        top_k=100, 
        top_p=0.8
    )
    
    print(tokenizer.decode(pred.cpu(), skip_special_tokens=True))

    YAYI2-30B 模型在多个基准数据集上进行了评测,包括语言理解、学科知识、数学推理、逻辑推理和代码生成等方面的表现。与其他规模相近的开源模型相比,YAYI2-30B 模型展现出了显著的性能提升[2]

    评测结果如下(部分数据集):

    • 知识理解:80.9
    • 数学:80.5
    • 逻辑推理:62.0
    • 代码生成:45.8[2]

    请注意,使用 YAYI2-30B 模型和数据需要遵循雅意 YAYI2 模型社区许可协议。如果您希望将 YAYI2-30B 模型用于商业用途,请参考雅意 YAYI2 模型商用许可协议[2]


    Learn more:

    1. GitHub – wenge-research/YAYI2: YAYI 2 是中科闻歌研发的新一代开源大语言模型,采用了超过 2 万亿 Tokens 的高质量、多语言语料进行预训练。(Repo for YaYi 2 Chinese LLMs)
    2. wenge-research/yayi2-30b · Hugging Face
    3. YAYI2-30B(YAYI2-30B)详细信息 | 名称、简介、使用方法,开源情况,商用授权信息 | 数据学习 (DataLearner)
  • 解析 Transformer 模型 | Way to AGI

    📚 导读:在这篇博客文章中,我们将深入探讨 Transformer 模型。Transformer 是一种神经网络结构,它在自然语言处理领域取得了重大突破。我们将了解 Transformer 的工作原理,为什么它如此强大,并看看它在翻译、文本生成和其他语言任务中的应用。让我们一起来了解这个令人惊叹的模型!


    大家好!在本篇文章中,我们将深入探讨一种引领自然语言处理领域的重要模型——Transformer!Transformer 模型的出现为我们实现通用人工智能(AGI)提供了新的可能性。它在翻译、文本生成和其他语言任务中表现出色,被广泛应用于各个领域。让我们一起来揭开这个神秘而强大的模型的面纱。

    1. 从锤子到钉子

    你是否曾经听说过这样一句话:“当你手中只有一把锤子时,所有东西看起来都像钉子。”在机器学习领域,我们似乎找到了一把神奇的“锤子”——Transformer 模型。实际上,对于 Transformer 模型而言,一切都像是钉子。它可以用于文本翻译、写诗、写文章,甚至生成计算机代码。在 Dale Markowitz 的文章中,他介绍了一些基于 Transformer 的令人惊叹的研究成果,如 AlphaFold 2、GPT-3、BERT、T5、Switch、Meena 等强大的自然语言处理模型。这些模型的功能非常强大,深受研究人员和开发者的喜爱。

    2. 传统方法的局限性

    在介绍 Transformer 之前,让我们先了解一下传统方法的局限性。在语言处理任务中,如翻译、文本摘要、文本生成等,长期以来都没有找到合适的方法。这一点非常不幸,因为语言是人类交流的主要方式。在 2017 年之前,我们使用深度学习模型来理解文本的方法主要是基于循环神经网络(RNN)。RNN 的工作原理是按顺序处理文本中的每个单词,然后输出相应的结果。然而,RNN 存在一些问题。

    首先,RNN 很难处理冗长的文本序列,如长段落或文章。当处理到文本的结尾时,RNN 往往会忘记开头发生了什么。例如,基于 RNN 的翻译模型可能很难记住长段落主语的性别。此外,RNN 很难训练,容易受到梯度消失/爆炸问题的影响。由于 RNN 是按顺序处理单词的,因此很难实现并行化,无法充分利用硬件加速训练速度,也无法使用更多的数据进行训练。

    3. Transformer 的出现

    那么,当 Transformer 模型出现时,它是如何解决上述问题的呢?Transformer 是由谷歌和多伦多大学的研究人员于 2017 年开发的,最初设计用于翻译任务。与之前的循环神经网络不同,Transformer 可以高效地实现并行化处理文本序列,从而解决了 RNN 的一些问题。

    4. Transformer 的工作原理

    Transformer 模型的核心思想是自注意力机制(self-attention mechanism)。它允许模型在处理每个单词时,能够关注整个输入序列的其他部分。这种机制使得模型能够更好地理解单词之间的依赖关系和上下文信息。

    具体而言,Transformer 模型包含了编码器(encoder)和解码器(decoder)两个部分。编码器负责将输入文本编码成一个语义表示,而解码器则将这个语义表示解码成输出文本。编码器和解码器都由多个堆叠的层组成,每个层都有自注意力机制和前馈神经网络组成。

    自注意力机制的计算过程可以简单概括为以下三个步骤:

    1. 计算注意力分数:为了计算第 i 个位置的注意力,模型会计算当前位置与其他所有位置的相关度分数。这些分数决定了模型在编码或解码过程中关注哪些位置的信息。
    2. 计算注意力权重:通过对注意力分数进行归一化处理,得到关注每个位置的权重。这些权重决定了模型对不同位置的关注程度。
    3. 加权求和:将每个位置的特征向量与对应的注意力权重相乘,并进行加权求和。这样可以将所有位置的信息整合到一个语义表示中。

    通过堆叠多个编码器和解码器层,Transformer 模型能够逐渐提取更加丰富和高级的语义信息。这使得模型能够更好地理解输入文本,并生成准确和连贯的输出文本。

    5. Transformer 的应用

    Transformer 模型在自然语言处理领域的应用非常广泛。除了翻译任务之外,它还被用于文本生成、问答系统、情感分析、命名实体识别等各种语言处理任务中。Transformer 模型的强大性能和可扩展性使得它成为当前最先进的自然语言处理模型之一。

    结语

    在本文中,我们深入探讨了 Transformer 模型的工作原理和应用。作为一种新颖而强大的神经网络结构,Transformer 模型通过自注意力机制解决了传统方法的一些问题,并在自然语言处理领域取得了令人瞩目的成果。它不仅在翻译任务中表现出色,还在文本生成和其他语言任务中展现出巨大潜力。相信随着技术的不断进步,Transformer 模型将在未来的人工智能发展中发挥更加重要的作用。

    感谢大家阅读本篇文章!如果你对 Transformer 模型还有任何疑问或者想要了解更多相关信息,欢迎在评论区留言。我们期待与大家继续探讨和分享关于人工智能的知识。谢谢!🤖🚀

  • 热点新闻:KwaiAgents – 基于大型语言模型的革命性信息搜索代理系统!

    🎉🎉🎉热点新闻:KwaiAgents – 基于大型语言模型的革命性信息搜索代理系统!🤖🔍

    你是否曾经想过机器如何能够具备人类的思考、规划和高效信息检索等能力?现在,不再需要猜测了!大型语言模型(LLMs)的最新进展为机器展示了强大的能力,即使参数数量有限。在本博客文章中,我们将深入探讨KwaiAgents的激动人心世界,这是一个基于LLMs的革命性信息搜索代理系统。让我们一起探索KwaiAgents如何利用尖端技术提供全面回答,并在该领域中超越其他自动代理。

    🧠人类级别的能力之威力

    受好奇心驱使,人类一直渴望探索和理解周围的世界。尽管我们的大脑无法处理和记忆大量信息,但我们在批判性思维和利用可用工具与世界进行交互和解释方面卓有成效。这种独特的认知和机智使得我们能够高效地找到答案。但是,如果机器也可以做到这一点呢?

    💡介绍KwaiAgents

    KwaiAgents是一个通用的信息搜索代理系统,利用LLMs的强大能力。这些代理具备基于LLMs的认知核心,使其能够理解用户的查询、行为准则,甚至参考外部文档。但这还不是全部!KwaiAgents还具备从内部记忆中更新和检索信息、使用时间感知的搜索浏览工具进行规划和执行操作,并最终提供全面回答的能力。

    🔍释放LLMs的威力

    为了确保KwaiAgents的卓越性能,该系统利用比GPT-4更不先进的LLMs。但不要被这个误导了!元代理调整(MAT)框架在对这些LLMs进行微调方面起着关键作用,确保即使在许多代理系统中,开源的7B或13B模型也能表现出色。通过广泛的基准测试和人类评估,KwaiAgents已经证明了其在其他自动代理系统方面的优越性,展示了精调LLMs的增强通用代理能力。

    🌐The Web Conference:展示KwaiAgents的潜力

    KwaiAgents不仅仅是一个理论概念。该系统已经在2024年5月13日至17日在新加坡举办的The Web Conference上进行了展示。这个备受赞誉的会议为展示KwaiAgents和LLMs的先进性提供了平台。KwaiAgents团队致力于推动人工智能的发展,并创造一个机器可以无缝互动和协助人类进行信息搜索的未来。

    📚开源供公众使用

    为了鼓励研究人员、开发人员和人工智能爱好者的合作和创新,KwaiAgents已经在GitHub上发布了系统代码、模型、训练数据和基准测试的精简版本。这一举措旨在推动KwaiAgents奠定的基础的探索和发展,推动信息搜索代理系统的发展。

    🏆KwaiAgents vs.全球

    通过全面的实验,KwaiAgents展现出了卓越的性能,超越了几个开源代理系统。这一成就特别值得注意,因为即使是较小的开源LLMs(7B或13B),也展示了信息搜索任务所需的通用代理能力。KwaiAgents在自主代理领域确实树立了新的标杆。

    要阅读有关KwaiAgents的完整研究论文,深入了解这个开创性系统的复杂细节,您可以在arXiv Vanity上找到它。

    🌟信息搜索代理的未来

    KwaiAgents代表了信息搜索代理发展的重大飞跃。通过利用LLMs的力量,KwaiAgents展示了其具备批判性思维、战略规划和提供全面回答的能力。随着我们不断挖掘LLMs的潜力并微调其能力,未来为信息搜索代理提供了无限的可能性,这些代理可以辅助和增强人类智慧。

    那么,你准备好与KwaiAgents踏上旅程,见证大型语言模型的变革力量了吗?信息搜索代理的未来已经到来,而且令人兴奋无比!🚀🤖💡

  • KwaiAgents:基于大型语言模型的通用信息检索代理系统

    人类的好奇心驱使着我们不断探索和理解周围的世界,这也导致了各种工具的发明,以满足我们的求知欲。尽管人类的大脑无法处理和记忆大量信息,但人类在批判性思维、规划、反思以及利用现有工具与世界互动和解释方面表现出色,从而能够高效地找到答案

    最近大型语言模型(LLMs)的进步表明,机器也可能具备上述类似于人类的能力,即使参数数量受限,也能展现出强大的能力。

    在这篇论文中,我们介绍了KwaiAgents,一种基于LLMs的通用信息检索代理系统。在KwaiAgents中,我们提出了一个代理系统,它以LLMs作为认知核心,能够理解用户的查询、行为指南和外部文档的引用。该代理还可以从内部存储器中更新和检索信息,使用基于时间的搜索浏览工具包进行规划和执行操作,并最终提供全面的响应。我们进一步研究了系统在由GPT-4更低级别的LLMs提供支持时的性能,并引入了Meta-Agent Tuning(MAT)框架,旨在确保开源的7B或13B模型在许多代理系统中表现良好。我们利用基准和人工评估系统的能力进行系统验证。广泛的实验显示了我们代理系统相对于其他自主代理的优势,并凸显了我们经过精调的LLMs的增强的通用代理能力。

    我们在https://github.com/KwaiKEG/KwaiAgents上发布了系统代码、模型、训练数据和基准的lite版本,供公众使用。


    伯特兰·罗素(Bertrand Russell)曾深刻地说过,追求知识是他一生中简单但无比强烈的激情之一。历代人们致力于探索世界的复杂性,创造出精巧的组织和检索工具,以满足无尽的好奇心。

    然而,认知科学的研究表明,人类平均在一小时内会遗忘约50%的新获得信息,这种现象被称为遗忘曲线。当个体试图在没有定期强化的情况下内化知识时,这一观察尤其成立。例如,虽然许多人轻松记得珠穆朗玛峰是“世界上最高的山”,但是“第五高的山”的身份常常会被遗忘。

    然而,人类的优势在于批判性思维、规划、反思和灵活运用外部资源。面对知识空白,人们可以咨询谷歌等搜索引擎,或者求助于维基百科或书籍等知识库。这种认知和足智多谋的独特结合使人类区别于其他物种,常常使我们比最先进的计算机更有洞察力。

  • KwaiAgents: 快手Agent系列

    KwaiAgents是快手快知团队开源的一整套Agent系列工作。这个开源项目包括以下内容:

    动态

    KwaiAgents是由快手快知团队开源的一整套Agent系列工作。这个开源项目包括以下内容:

    • KAgentSys-Lite:这是论文中KAgentSys的轻量版系统,保留了一部分原系统的功能。相比功能齐全的系统,KAgentSys-Lite有一些差异:(1)缺少部分工具;(2)缺乏记忆机制;(3)性能略有降低;(4)使用不同的代码库,Lite版本基于开源项目如BabyAGI和Auto-GPT。尽管有这些变更,KAgentSys-Lite在众多开源Agent系统中仍然具有较好的性能。
    • KAgentLMs:这是经过论文中提出的Meta-agent tuning之后的系列大模型,具备了规划、反思、工具使用等能力。
    • KAgentInstruct:这是一个包含超过20万条经过人工编辑的Agent相关指令微调数据集。
    • KAgentBench:这是一个包含超过3000条经过人工编辑的自动化评测Agent能力数据集,评测维度包括规划、工具使用、反思、总结、人设指令等。

    评测表现

    KwaiAgents提供了一系列模型和数据集来评测Agent的能力。以下是一些关键的模型和数据集:

    模型训练数据Benchmark
    Qwen-7B-MATKAgentInstruct (即将发布)KAgentBench
    Baichuan2-13B-MATKAgentInstruct (即将发布)KAgentBench

    使用指南

    如果你想使用KwaiAgents,以下是一些快速入门指南:

    AgentLMs 系列模型使用

    AgentLMs系列模型是具备规划、反思和工具使用等能力的大模型。你可以按照以下步骤使用这些模型:

    1. 安装依赖:在项目根目录下执行以下命令安装所需的依赖:
    pip install -r requirements.txt
    1. 加载模型:使用Hugging Face Transformers库加载所需的模型,例如:
    from transformers import AutoModelForCausalLM, AutoTokenizer
    
    model_name = "kwaikeg/kagentlms_qwen_7b_mat"
    model = AutoModelForCausalLM.from_pretrained(model_name)
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    1. 生成文本:使用加载的模型生成文本,例如:
    input_text = "今天天气不错,"
    input_ids = tokenizer.encode(input_text, return_tensors="pt")
    output = model.generate(input_ids, max_length=50,# 📚 KwaiAgents: 快手Agent系列工作
    
    <p align="center">
        <a href="/KwaiKEG/KwaiAgents/blob/main/blob/logo.png"><img src="/KwaiKEG/KwaiAgents/raw/main/blob/logo.png" width="400" style="max-width: 100%;"></a>
    </p>
    
    <p align="left">
        <a href="/KwaiKEG/KwaiAgents/blob/main/README.md">English</a> | 中文
    </p>
    
    KwaiAgents是快手快知团队开源的一整套Agent系列工作。这个开源项目包括以下内容:
    
    ### 动态
    
    KwaiAgents是由快手快知团队开源的一整套Agent系列工作。这个开源项目包括以下内容:
    
    - **KAgentSys-Lite**:这是论文中KAgentSys的轻量版系统,保留了一部分原系统的功能。相比功能齐全的系统,KAgentSys-Lite有一些差异:(1)缺少部分工具;(2)缺乏记忆机制;(3)性能略有降低;(4)使用不同的代码库,Lite版本基于开源项目如BabyAGI和Auto-GPT。尽管有这些变更,KAgentSys-Lite在众多开源Agent系统中仍然具有较好的性能。
    
    - **KAgentLMs**:这是经过论文中提出的Meta-agent tuning之后的系列大模型,具备了规划、反思、工具使用等能力。
    
    - **KAgentInstruct**:这是一个包含超过20万条经过人工编辑的Agent相关指令微调数据集。
    
    - **KAgentBench**:这是一个包含超过3000条经过人工编辑的自动化评测Agent能力数据集,评测维度包括规划、工具使用、反思、总结、人设指令等。
    
    ### 评测表现
    
    KwaiAgents提供了一系列模型和数据集来评测Agent的能力。以下是一些关键的模型和数据集:
    
    | 模型                           | 训练数据                                     | Benchmark                                      |
    |-------------------------------|--------------------------------------------|-----------------------------------------------|
    | [Qwen-7B-MAT](https://huggingface.co/kwaikeg/kagentlms_qwen_7b_mat)       | [KAgentInstruct](https://huggingface.co/datasets/kwaikeg/KAgentInstruct) (即将发布) | [KAgentBench](https://huggingface.co/datasets/kwaikeg/KAgentBench)            |
    | [Baichuan2-13B-MAT](https://huggingface.co/kwaikeg/kagentlms_baichuan2_13b_mat) | [KAgentInstruct](https://huggingface.co/datasets/kwaikeg/KAgentInstruct) (即将发布) | [KAgentBench](https://huggingface.co/datasets/kwaikeg/KAgentBench)            |
    
    ### 使用指南
    
    如果你想使用KwaiAgents,以下是一些快速入门指南:
    
    #### AgentLMs 系列模型使用
    
    AgentLMs系列模型是具备规划、反思和工具使用等能力的大模型。你可以按照以下步骤使用这些模型:
    
    1. 安装依赖:在项目根目录下执行以下命令安装所需的依赖:

    pip install -r requirements.txt

    2. 加载模型:使用Hugging Face Transformers库加载所需的模型,例如:


    from transformers import AutoModelForCausalLM, AutoTokenizer

    model_name = “kwaikeg/kagentlms_qwen_7b_mat”
    model = AutoModelForCausalLM.from_pretrained(model_name)
    tokenizer = AutoTokenizer.from_pretrained(model_name)

    3. 生成文本:使用加载的模型生成文本,例如:

    input_text = “今天天气不错,”
    input_ids = tokenizer.encode(input_text, return_tensors=”pt”)
    output = model.generate(input_ids, max_length=50,

  • Empowering Few-Shot Recommender Systems with Large Language Models — Enhanced Representations

    Q: 这篇论文试图解决什么问题?

    A: 这篇论文试图解决推荐系统在少样本(few-shot)场景下如何有效生成推荐的问题。具体来说,作者探讨了如何利用大型语言模型(LLMs)来增强基于显式反馈的推荐系统在少样本场景下的性能。他们提出了一种使用LLMs生成用户和项目表示的方法,并将这些表示集成到不同的推荐模型中,以评估它们在多样化推荐任务中的有效性。通过消融实验和案例研究分析,论文展示了LLMs在处理显式反馈方面的能力,以及它们如何作为推荐系统组件,增强系统在少样本场景下的性能。此外,LLMs的广泛适应性提高了推荐模型的泛化潜力,尽管存在某些固有约束。作者希望他们的研究可以激发研究人员深入探讨LLMs在推荐系统中的多方面作用,并为基于显式反馈的推荐系统领域的发展做出贡献。

    Q: 有哪些相关研究?

    A: 相关研究包括: 1. 利用LLMs(如ChatGPT)作为推荐系统组件的研究,例如Chat-REC,它将ChatGPT作为对话式推荐界面,增强现有推荐模型的性能,使推荐过程更具互动性和可解释性。 2. 使用LLMs进行文本数据增强的研究,如ChatAug,它利用ChatGPT对文本数据进行重述,同时展示了ChatGPT作为文本摘要工具的有效性。 3. 在自然语言生成任务中,ChatGPT在特定条件下表现出在生成有说服力的推荐解释和广告方面的卓越能力。 4. 探索ChatGPT作为显式反馈处理方法的研究,尤其是在少样本推荐场景中,例如将ChatGPT作为推荐系统的独立组件,评估其在特定推荐任务(如直接推荐)中的性能。 5. 使用LLMs生成文本表示的研究,通过提示模板将用户和项目评论转换为文本表示,然后使用语言模型(如MacBERT)将这些表示嵌入到推荐系统中。 6. 评估LLMs处理显式反馈有效性的研究,通过消融实验和案例研究分析来量化LLMs生成的表示与原始评论之间的语义关系,并评估这些表示在不同推荐模型和任务中的有效性。 7. 探索LLMs在推荐系统中的多方面作用,如可解释性、冷启动挑战和模型增强,特别是在涉及显式反馈的推荐系统中。

    Q: 论文如何解决这个问题?

    A: 论文通过以下几个步骤解决少样本推荐问题: 1. **使用LLMs生成用户和项目表示**:作者开发了一个提示模板,该模板利用LLMs(如ChatGPT)处理电影评论,生成用户和项目的文本表示。这些表示是基于用户的评论集合和项目评论集合生成的。 2. **将文本表示嵌入到推荐模型中**:使用预训练的语言模型(如MacBERT,一个针对中文的LLM)将生成的文本表示转换为数值表示,这些数值表示随后被用作推荐模型的输入。 3. **消融实验**:作者在不同的推荐任务上进行了消融实验,包括交互预测(预测用户是否会与特定项目互动)和直接推荐(推荐最可能符合用户偏好的项目)。他们比较了使用LLMs处理的表示与未处理的原始评论表示在推荐模型中的表现。 4. **案例研究分析**:通过手动观察和分析,作者评估了LLMs生成的文本表示的质量,以及它们是否包含额外的可观察属性和特征。 5. **性能评估**:在实验中,作者使用了多种统计方法(如余弦相似度、曼哈顿距离和欧几里得距离)来量化实验数据集和控制数据集之间的语义关系。他们还使用了推荐系统中常用的评估指标,如准确率、召回率、F1分数、HR@k和MRR@k,来评估推荐模型的性能。 通过这些步骤,论文展示了LLMs在处理显式反馈和增强推荐系统性能方面的潜力,特别是在少样本场景下。作者发现,使用LLMs处理的表示在某些推荐模型中显著提高了性能,尤其是在结合神经网络的模型中。此外,LLMs的广泛适用性和处理文本信息的能力,即使在缺乏量化指标的情况下,也能增强推荐系统的泛化潜力。

    Q: 论文做了哪些实验?

    A: 论文中进行了以下实验: 1. **数据集构建**:从公开的豆瓣中文电影数据集(Douban Chinese Moviedata-10M)中随机选择了1000名用户,并提取了这些用户的历史用户-项目交互样本。这些样本按时间顺序排序,最近两次交互的物品ID被提取作为测试和验证样本。其余的交互样本构成了用于输入ChatGPT以生成文本用户表示的训练数据集。为了模拟少样本场景,作者随机丢弃了多余的样本,同时确保至少保留每个用户的一个样本。此外,还构建了项目训练数据集,每个项目至少有一个对应的样本。 2. **表示生成**:使用MacBERT和Word2vec将文本用户和项目表示嵌入到推荐系统中,同时构建了控制数据集。 3. **语义距离评估**:量化了实验数据集(ChatGPT处理+MacBERT嵌入)和控制数据集(仅MacBERT嵌入)之间每个用户/项目表示的语义关系。使用了余弦相似度、曼哈顿距离和欧几里得距离作为统计方法。 4. **推荐任务性能比较**:在用户-项目交互和用户-项目嵌入上进行了消融实验,使用了线性、MLP和CNN模型进行交互预测任务,以及BPR-MF和NCF模型进行直接推荐任务。比较了使用ChatGPT处理的嵌入与仅使用MacBERT嵌入的控制数据集在这些推荐任务上的性能。 5. **案例研究**:对文本用户和项目表示进行了全面的案例研究,以补充发现并揭示嵌入过程中可能被忽视的信息。手动观察了ChatGPT处理的文本表示,并评估了它们在推荐模型中的有效性。 这些实验旨在评估LLMs作为文本显式反馈处理方法在推荐系统中的有效性,特别是在少样本场景下。

    Q: 有什么可以进一步探索的点?

    A: 论文提出了以下几个可以进一步探索的点: 1. **集成更多基于神经网络的推荐模型**:作者提到他们计划将更多基于神经网络的推荐模型纳入研究,以进一步验证LLMs处理的嵌入在不同模型结构中的表现。 2. **探索业务应用**:论文中提到,ChatGPT生成的文本用户和项目表示在业务应用(如营销分析、广告生成)中具有潜力,这值得进一步探索。 3. **LLMs的持续进步**:随着LLMs技术的不断发展,未来可能会有更先进的模型出现,这些模型在关联和推理方面的能力可能会超过当前的ChatGPT。这些新模型在推荐系统中的表现将是有趣的研究方向。 4. **推荐系统的多方面作用**:论文中提到LLMs在推荐系统中的多方面作用,包括可解释性、冷启动挑战和模型增强,尤其是在涉及显式反馈的推荐系统中。这些领域都是未来研究的潜在方向。 5. **LLMs的泛化能力**:尽管LLMs在处理文本信息方面表现出色,但在少样本场景下,它们的泛化能力仍有待提高。研究如何提高LLMs在推荐系统中的泛化能力是一个重要的研究课题。 6. **模型结构和特性的影响**:论文中观察到模型结构和特性对LLMs处理的嵌入的表现有影响。深入理解这些影响,并探索如何优化模型结构以更好地利用LLMs的能力,是一个值得研究的问题。 7. **用户反馈的复杂性**:随着用户反馈变得越来越复杂和数量庞大,如何有效地处理这些反馈以提高推荐系统的性能是一个持续的挑战。研究LLMs在这方面的潜力和限制是有意义的。

    Q: 总结一下论文的主要内容

    A: 这篇论文探讨了如何利用大型语言模型(LLMs)来增强基于显式反馈的推荐系统在少样本(few-shot)场景下的性能。作者提出了一种方法,通过使用LLMs(如ChatGPT)处理用户和项目的文本评论,生成用户和项目的文本表示。这些表示随后被嵌入到推荐模型中,以评估它们在不同的推荐任务(如交互预测和直接推荐)中的表现。 论文的主要内容包括: 1. **问题定义**:推荐系统在少样本场景下面临挑战,需要基于有限的用户信息提供推荐。LLMs,如ChatGPT,因其在自然语言处理(NLP)任务中的潜力,被提出作为解决这一问题的方案。 2. **方法论**:作者开发了一个提示模板,该模板利用LLMs处理电影评论以生成用户和项目的文本表示。这些表示随后被嵌入到推荐模型中,并在交互预测和直接推荐任务上进行评估。 3. **实验设计**:使用豆瓣电影数据集进行实验,构建了包含用户和项目文本表示的数据集,并将其与仅使用MacBERT嵌入的控制数据集进行比较。 4. **结果分析**:消融实验和案例研究分析表明,LLMs在处理显式反馈方面有效,能够作为推荐系统的组件,特别是在结合神经网络的模型中,显著提高了少样本场景下的性能。 5. **结论与展望**:作者认为LLMs的广泛应用和处理文本信息的能力可以增强推荐系统的泛化潜力。他们希望这项研究能激发更多关于LLMs在推荐系统中作用的探索,并为推荐系统领域的发展做出贡献。 论文的主要贡献在于展示了LLMs在推荐系统中处理显式反馈的潜力,并提出了一种利用LLMs增强推荐系统性能的新方法。

  • Algebraic Positional Encodings

    Q: 这篇论文试图解决什么问题?

    A: 这篇论文提出了一种新的Transformer模型的位置编码策略。Transformer模型在自然语言处理等领域取得了巨大成功,但它们在处理结构化数据时存在局限性,因为默认的点积注意力机制无法感知输入/输出标记的结构排列。为了解决这个问题,论文提出了一种灵活的框架,将一个域的代数规范映射到正交算子的解释,从而在模型中保留源域的代数特性。该框架可以适应各种结构,包括序列、网格和树,以及它们的组合。论文通过一系列实验展示了这种方法的实际适用性,并表明其性能与或超过了当前最先进的方法。

    Q: 有哪些相关研究?

    A: 这篇论文提到了以下相关研究: 1. Vaswani et al. (2017) 提出了Transformer模型,它使用多头缩放点积注意力机制。 2. Shaw et al. (2018) 提出了可训练的相对位置编码。 3. Su et al. (2023) 提出了旋转位置编码(RoPE)。 4. Wang et al. (2020) 提出了将位置编码视为序列同态的方法。 5. Dufter et al. (2022) 对Transformer中的位置信息进行了全面的调查。 6. Beltagy et al. (2020) 提出了Longformer模型,通过截断相对距离来处理位置信息。 7. Gehring et al. (2017) 提出了卷积序列到序列学习,这是Transformer的早期工作之一。 8. Hassani et al. (2021) 提出了紧凑Transformer模型,用于处理图像数据。 9. Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020. Longformer: The long-document transformer. arXiv preprint arXiv:2004.05150. 10. Guolin Ke, Di He, and Tie-Yan Liu. 2020. Rethinking positional encoding in language pre-training. In International Conference on Learning Representations. 11. Katharopoulos et al. (2020) 提出了具有聚类注意力的快速Transformer。 12. Lu et al. (2021) 提出了具有线性复杂度的Softmax-free Transformer。 13. Wu et al. (2021) 提出了距离感知Transformer。 14. Yan et al. (2019) 提出了适应Transformer编码器用于命名实体识别的Tener模型。 15. Shiv and Quirk (2019) 提出了用于启用基于树的Transformer的新型位置编码。 16. Lim et al. (2023) 提出了将位置编码作为群表示的统一框架。 这些研究涵盖了位置编码的不同方法、Transformer模型的扩展以及对结构化数据的处理。

    Q: 论文如何解决这个问题?

    A: 论文通过以下几个关键点提出了一种新的位置编码策略来解决Transformer模型处理结构化数据的问题: 1. **代数规范**:论文首先分析了机器学习中常见的数据结构(如序列、树和网格),并使用代数方法(如群论)来描述它们。这种方法可以捕捉数据的内在结构。 2. **同态映射**:然后,论文提出了一种同态映射,将数据结构中的路径映射到正交矩阵上的操作。这种映射保留了数据结构的代数特性,并可以解释为注意力兼容的向量运算。 3. **正交位置编码**:论文使用正交矩阵来表示位置信息。对于序列,他们发现可以使用一个正交矩阵来解释位置信息。对于更复杂的结构,如树和网格,他们使用一组正交矩阵来解释位置信息。 4. **实验验证**:论文通过在序列、树和网格上的一系列实验来验证他们的方法。实验结果表明,他们提出的位置编码策略在许多任务上都能达到或超过现有技术的性能。 5. **灵活性和扩展性**:这种方法的一个优点是它可以很容易地适应不同的数据结构和任务需求。通过调整正交矩阵,可以控制模型如何捕捉结构信息,从而为不同的应用提供定制的解决方案。 总的来说,论文通过结合代数理论和注意力机制,提出了一种既能捕捉数据结构又能在Transformer模型中有效使用的位置编码方法。

    Q: 论文做了哪些实验?

    A: 论文在不同类型的数据结构上进行了一系列的实验来验证提出的位置编码方法的有效性。这些实验包括: 1. **序列任务**:在序列数据上,论文考虑了三个合成任务:序列复制、序列反转和序列重复。他们将提出的位置编码方法与标准的正弦位置编码、可训练的相对位置编码(Shaw et al., 2018)和旋转位置编码(RoPE, Su et al., 2023)进行比较。 2. **树任务**:在树形数据上,论文考虑了四个合成任务:树复制、树旋转、代数表达式简化和自引用树操作。他们将提出的方法与Shiv和Quirk (2019)的“树”编码、扁平版本的位置编码进行比较。 3. **网格任务**:作为更实际的基准测试,论文在CIFAR-10数据集上训练和评估了一个紧凑的卷积Transformer(Hassani et al., 2021),并将提出的位置编码方法与通常使用的正弦和可学习的位置编码进行比较。 在所有这些实验中,论文报告了测试集结果,并强调了在每个类别中所有分数都在最佳分数的一个标准差以内的所有分数。他们的方法是在没有任何超参数优化或“任务搜索”的情况下进行评估的。实验结果表明,提出的位置编码方法在所有任务和领域中都达到了最佳或接近最佳的成绩。

    Q: 有什么可以进一步探索的点?

    A: 论文提出了一些可以进一步探索的点,包括: 1. **更复杂的数据结构**:论文目前只探索了可以用简单归纳语法描述的规则结构,如序列、树和网格。将这种方法扩展到更复杂的结构,如任意图或其他类型的不规则结构,将是一个有趣的研究方向。论文作者提到,虽然他们有意识地避免了处理这些复杂结构,但他们相信相同的原理也可以应用于这些情况,即使不是在完全相同的解释指导下。 2. **任务特定的适应**:论文指出,他们的实验范围较窄,可能无法得出不可辩驳或绝对的结论。他们将任务特定适应的工作留作未来研究的开放问题,这需要进一步探索。 3. **评估方法**:论文在测试期间使用了教师强制(teacher forcing)来评估模型,这可能过于乐观地描绘了“真实世界”的自回归推理。未来的工作可以探索更现实的评估方法。 4. **计算效率**:论文的方法在处理树形结构时会增加模型的参数数量和计算复杂性。优化计算效率,特别是在树形结构上,可能是一个值得关注的领域。 5. **理论基础**:论文的理论分析目前集中在可以由抽象群描述的结构上。将同态视角扩展到更复杂的结构,如任意图或其他类型的归纳和结构规范,仍然是一个开放问题。 6. **实际应用**:论文的方法在实验中显示出了很好的结果,但它们在真实世界应用中的表现如何,特别是在大规模数据集和复杂任务中,还需要进一步研究。 7. **模型解释性**:论文提出的方法增加了模型的透明度和可解释性,但如何利用这些改进的位置编码来提高我们对模型内部工作机制的理解,仍然是一个开放的研究领域。

    Q: 总结一下论文的主要内容

    A: 这篇论文介绍了一种新的位置编码策略,用于Transformer模型处理结构化数据。主要内容包括: 1. **问题背景**:Transformer模型在自然语言处理等领域取得了巨大成功,但它们在处理结构化数据时存在局限性,因为默认的点积注意力机制无法感知输入/输出标记的结构排列。 2. **提出的方法**:论文提出了一种灵活的框架,将一个域的代数规范映射到正交算子的解释,从而在模型中保留源域的代数特性。这种方法可以适应各种结构,包括序列、网格和树,以及它们的组合。 3. **关键概念**: – 使用代数方法(如群论)描述数据结构。 – 提出同态映射,将数据结构中的路径映射到正交矩阵上的操作。 – 使用正交矩阵来表示位置信息,为序列、树和网格等结构提供位置编码。 4. **实验验证**:论文通过在序列、树和网格上的一系列实验来验证提出的方法。实验结果表明,这种方法在许多任务上都能达到或超过现有技术的性能。 5. **讨论限制**:论文承认了在理论、实证和认识论方面的局限性,包括处理复杂数据结构的能力、计算效率以及实验范围的狭窄。 6. **未来工作**:论文提出了未来研究的方向,包括探索更复杂的数据结构、优化计算效率、研究任务特定的适应性,以及提高模型的解释性。 总的来说,这篇论文通过结合代数理论和注意力机制,提出了一种既能捕捉数据结构又能在Transformer模型中有效使用的位置编码方法。

  • A Prompt Learning Framework for Source Code Summarization

    Q: 这篇论文试图解决什么问题?

    A: 这篇论文试图解决的问题是自动生成代码片段的自然语言摘要(也称为注释),这对于帮助开发人员理解和维护源代码至关重要。最近,随着大型语言模型(LLMs)在许多领域的成功应用,软件工程研究人员也尝试将LLMs应用于代码摘要任务。然而,现有的适应LLMs的方案,如指令提示和面向任务的微调,要么需要用户设计精心制作的提示,要么需要高昂的训练成本。因此,作者提出了一种新颖的提示学习框架PromptCS,它可以生成连续的提示,以释放LLMs在代码摘要中的潜力,而不需要用户设计复杂的提示。PromptCS是非侵入性的,可以在不更新LLMs参数的情况下训练提示代理,从而大大减少了训练资源的需求。

    Q: 有哪些相关研究?

    A: 相关研究包括: 1. 使用大型语言模型(LLMs)进行代码摘要,例如 Codex, StarCoder, CodeGen, 和 PolyCoder。 2. 使用指令提示和零/少次学习来适应LLMs进行代码摘要任务。 3. 面向任务的微调,通过在特定任务的数千个标记数据上训练来更新LLMs的权重。 4. 开发用于代码理解和生成的统一跨模态预训练,如 UniXcoder 和 GraphCodeBERT。 5. 使用基于 Transformer 的模型进行代码摘要,例如 CodeBERT 和 PLBART。 6. 自动化评估源代码摘要技术,如使用 BLEU, METEOR, ROUGE-L 和 SentenceBERT 等指标。 7. 研究源代码摘要的自动化文本摘要技术,以支持程序理解。 8. 使用深度学习方法,如 RNN 和 LSTM,来捕捉代码片段和它们相应摘要之间的语义关系。 9. 使用基于检索的方法进行神经源代码摘要,通过从训练集中检索最相似的代码片段来增强基于 Transformer 的模型。 10. 评估大型语言模型在代码任务上的表现,如在 CodeSearchNet 数据集上进行语义代码搜索和代码摘要。 这些研究为使用 LLMs 解决代码摘要问题提供了基础,并探索了不同的方法和技术。

    Q: 论文如何解决这个问题?

    A: 论文提出了一种新颖的提示学习框架 PromptCS 来解决代码摘要问题。PromptCS 的关键特点是它能够让用户摆脱手动设计复杂提示的需求。具体来说,PromptCS 设计了两个协同工作的组件:提示代理(prompt agent)和大型语言模型(LLM)。提示代理负责生成连续的提示,以引导 LLM 执行代码摘要任务。提示代理的核心是一个基于深度学习的提示编码器(prompt encoder),它接受一个由可学习标记组成的伪提示(pseudo prompt)作为输入,并产生提示嵌入(prompt embedding,即连续提示)。提示代理在 LLM 的指导下进行训练,因此训练好的提示代理能够产生比人工编写的离散提示更适合 LLM 的连续提示。更重要的是,与面向任务的微调方案不同,PromptCS 对 LLMs 是非侵入性的,它在训练过程中冻结了 LLM 的参数,只更新提示代理的参数,从而大大降低了训练资源的需求。作者在 CodeSearchNet 数据集上对 PromptCS 的有效性进行了评估,实验结果表明 PromptCS 在所有四个广泛使用的指标(BLEU、METEOR、ROUGE-L 和 SentenceBERT)上显著优于指令提示方案(包括零次和少次学习),并且与面向任务的微调方案相当。在某些基础 LLMs(如 CodeGen-Multi-2B 和 StarCoderBase-1B 和 -3B)上,PromptCS 甚至优于面向任务的微调方案。更重要的是,PromptCS 的训练效率比面向任务的微调方案更快,在较大的 LLMs 上优势更为明显。人工评估的结果表明,与基线相比,PromptCS 能够生成更多的高质量摘要。

    Q: 论文做了哪些实验?

    A: 论文进行了以下实验来评估 PromptCS 的有效性: 1. 基线比较:将 PromptCS 与三种适应 LLMs 进行代码摘要的方案进行比较:指令提示(零次学习)、指令提示(少次学习)和面向任务的微调。在 CodeSearchNet 数据集上,PromptCS 在所有四个评估指标(BLEU、METEOR、ROUGE-L 和 SentenceBERT)上都显著优于指令提示方案,并与面向任务的微调方案相当。 2. 关键配置的影响:研究了提示长度和代码与提示嵌入的连接模式这两个关键配置对 PromptCS 性能的影响。实验结果表明,不同的配置组合对 PromptCS 的有效性有不同的影响,但这些影响的差异很小。 3. 提示编码器网络架构的影响:比较了在 BiLSTM 和 Transformer 上构建提示编码器对 PromptCS 的影响。结果表明,随着 LLM 模型大小的增加,如果提示编码器是基于 BiLSTM,PromptCS 的性能趋于改善,而如果是基于 Transformer,则性能表现相反。 4. 训练数据规模的影响:分析了训练数据规模对 PromptCS 有效性的影响。结果表明,即使只有 100 个可用样本,PromptCS 也能实现相当不错的性能。 5. 其他编程语言的有效性:在 JavaScript 和 Python 这两种其他编程语言上验证了 PromptCS 的泛化能力。结果表明,PromptCS 在这些语言上也表现出良好的泛化能力。 6. 人工评估:邀请具有超过四年软件开发经验和优秀英语能力的志愿者对生成的摘要进行人工评估。评估结果表明,与基线相比,PromptCS 生成的摘要平均得分更高,并且生成了更多的高质量摘要。

    Q: 有什么可以进一步探索的点?

    A: 尽管 PromptCS 在代码摘要任务上取得了显著的性能提升,但仍有一些可以进一步探索的点: 1. 提示优化:尽管 PromptCS 的提示代理在生成连续提示方面取得了成功,但仍有可能进一步优化提示以更好地适应不同的 LLMs 和代码摘要任务。 2. 多语言支持:虽然在 JavaScript 和 Python 上进行了实验,但在更多的编程语言上测试 PromptCS 的泛化能力将是有趣的。 3. 模型可解释性:研究 PromptCS 生成高质量代码摘要的内部机制,提高模型的可解释性,可以帮助开发者理解模型是如何生成摘要的。 4. 交互式摘要:将 PromptCS 扩展到交互式代码摘要,允许开发者通过迭代的方式改进生成的摘要。 5. 错误检测和修复:利用 PromptCS 的能力来检测代码中的错误并生成修复建议。 6. 代码生成:探索 PromptCS 在代码生成任务中的应用,例如代码补全、代码搜索和代码克隆检测。 7. 模型压缩:研究如何压缩 PromptCS 的提示代理,以便于在资源受限的环境中部署。 8. 实时反馈:集成实时用户反馈到 PromptCS 中,以进一步改进摘要的质量。 9. 跨领域适应:研究 PromptCS 是否可以适应其他软件工程任务,如需求分析、设计文档生成等。 10. 评估标准:开发更先进的评估指标,以更全面地评估代码摘要的质量。

    Q: 总结一下论文的主要内容

    A: 这篇论文提出了一个名为 PromptCS 的新颖提示学习框架,用于源代码摘要。PromptCS 的核心特点是它能够自动生成连续的提示,以引导大型语言模型(LLMs)完成代码摘要任务,而无需用户手动设计复杂的提示。PromptCS 包含两个主要组件:一个提示代理和一个 LLM。提示代理负责生成提示,而 LLM 在训练过程中保持参数冻结。PromptCS 在 CodeSearchNet 数据集上进行了广泛的实验,结果表明它在多个评估指标上显著优于基于指令的零次和少次学习方案,并与面向任务的微调方案相当。在某些情况下,PromptCS 甚至超过了面向任务的微调方案。此外,PromptCS 的训练效率比面向任务的微调方案更高,尤其是在较大的 LLMs 上。人工评估的结果也显示 PromptCS 能够生成更多高质量的摘要。总的来说,PromptCS 是一个有效的框架,可以以较低的训练成本适应 LLMs 进行代码摘要。

  • 全新推出:Linly-Talker数字化人物对话系统

    准备好体验颠覆性的人机交互方式了吗?不用再等了!Linly-Talker正式登场,将彻底改变我们与人工智能系统的互动方式。🤖💬

    Linly-Talker是一款智能AI系统,它将大型语言模型(LLMs)与视觉模型相结合,创造了一种独特的对话体验。通过集成Whisper、Linly、微软语音服务和SadTalker说话头部生成系统等多种技术,Linly-Talker汇集了最佳的特点。🌍🔍

    让我们深入了解Linly-Talker的功能和特点:

    Linly-Talker的组成部分

    1️⃣ ASR(自动语音识别)- Whisper:Linly-Talker利用OpenAI的Whisper进行准确的语音识别。这确保系统能够有效地理解和解释您的语音命令。

    2️⃣ TTS(文本转语音)- Edge TTS:为了提供自然而人性化的对话体验,Linly-Talker使用微软语音服务进行高质量的文本到语音合成。这意味着AI助手能够以清晰逼真的声音回应您。

    3️⃣ THG(说话头部生成)- SadTalker:Linly-Talker更进一步,引入了SadTalker技术,这是CVPR 2023的前沿技术。它可以生成与AI助手回应相匹配的逼真说话头部动画。

    4️⃣ LLM(大型语言模型)- Linly:Linly是由深圳大学CVI开发的核心语言模型,它利用大规模语言模型的强大能力,理解和生成人类般的回应。Linly模型在大量数据上进行了预训练,并可以进行特定任务的微调。

    设置Linly-Talker

    要开始使用Linly-Talker,请按照以下设置说明进行操作:

    1️⃣ 创建一个新的conda环境:

    conda create -n linly python=3.8
    conda activate linly

    2️⃣ 安装所需的依赖项:

    pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113 
    conda install ffmpeg
    pip install -r requirements_app.txt

    3️⃣ 下载所需的模型:

    • 对于ASR(Whisper),请参考Whisper GitHub存储库获取使用说明。
    • 对于TTS(Edge TTS),请查看Edge TTS GitHub存储库获取使用详细信息。
    • 对于THG(SadTalker),使用提供的脚本下载SadTalker模型:
    bash scripts/download_models.sh

    4️⃣ 获取Linly语言模型:

    • 选项1:克隆Linly存储库及其模型,可以从Hugging Face模型中心获取:
    git lfs install
    git clone https://huggingface.co/Linly-AI/Chinese-LLaMA-2-7B-hf
    • 选项2:使用Linly API进行问题回答:
    import requests
    
    url = "http://url:port"  
    headers = {
      "Content-Type": "application/json" 
    }
    
    data = {
      "question": "北京有哪些有趣的地方?"
    }
    
    response = requests.post(url, headers=headers, json=data)

    与Linly-Talker对话

    一旦您设置好Linly-Talker,就可以开始与AI助手进行有趣的对话了。系统允许您提供图像作为提示来刺激对话。您可以自由对话或根据自己的喜好生成内容。

    参考资料和进一步探索

    如需深入了解Linly-Talker的能力和微调选项,请参阅Linly-Talker GitHub存储库中提供的文档和资源:GitHub – Kedreamix/Linly-Talker

    🌟 热度历史:Linly-Talker已获得34个星标和3个Fork,展现了其受欢迎程度和发展潜力。

    现在轮到您来探索Linly-Talker的可能性,见证人机交互的未来了!🚀🤩

  • 知差(chai)网上线!

    zhichai.net 知识的邮差,同时也取了 填补信息差(cha)的含义!

    App时代,人们困于推荐系统的信息茧房和App的信息孤岛里;还会用网站来主动搜索浏览信息的人越来越少。这创造了很多利用信息差赚钱的机会。

    本站致力于提供各种可弥合信息差的讯息,因此取名:知差网。

    希望能帮助大家,或利用好信息差赚到钱,或避免被人用信息差赚走钱。