分类: AGI

  • 如何教小型语言模型进行推理

    大家好,欢迎收听本期播客节目!我是你们的主持人,今天我将和大家一起探讨一个重要的话题:如何教小型语言模型进行推理。推理能力对于语言模型来说非常关键,它能够帮助模型理解并生成连贯且上下文相关的回答。近年来,有许多研究和方法致力于提高语言模型的推理能力,甚至包括参数较小的模型。

    1. 连贯性思维引导

    一种在提高大型语言模型推理能力方面取得显著成果的方法是使用连贯性思维引导。这种方法通过给模型提供一系列提示或问题来引导其思维过程,鼓励其逐步推理。通过使用连贯性思维引导训练语言模型,研究人员在各种推理任务上取得了最先进的结果。

    2. 知识蒸馏

    为了将大型语言模型的推理能力传递给较小的模型,研究人员进行了知识蒸馏的探索。在这种方法中,通过较大的“教师”模型生成的连贯性思维输出来训练较小的“学生”模型。教师模型的连贯性思维输出为学生模型提供了宝贵的知识源,使其能够学习和提高其推理能力。

    3. 实验结果

    对算术、常识和符号推理数据集进行的实验证明了知识蒸馏方法对较小语言模型的任务性能的改进[1]。例如,当在一个名为PaLM-540B生成的连贯性思维的基础上进行微调时,T5 XXL模型在GSM8K数据集上的准确率从8.11%提高到了21.99%。

    来源:

    1. Teaching Small Language Models to Reason – Magister等人,ACL文集,2023年。

    了解更多:

    1. [2212.08410] Teaching Small Language Models to Reason
    2. Teaching Small Language Models to Reason – ACL Anthology
    3. [2311.11045] Orca 2: Teaching Small Language Models How to Reason
  • AI新星Orca 2——如何让小型语言模型变得更“聪明”

    大家好,欢迎收听今天的播客,我是你们的主持人。在这个科技日新月异的时代,我们的生活被越来越多的人工智能(AI)技术改变。今天,我们要带大家深入了解一种被称为Orca 2的新型AI技术。

    🚀Orca 2:推理技巧赋能小型语言模型

    一起想象一下,如果我们的手机、电脑、甚至是家用电器,都能像人类一样进行推理、解答问题,那会是怎样的情景呢?这并非遥不可及,因为微软研究团队已经让这个梦想变为现实。他们开发出了一种名为Orca 2的新型人工智能技术,这个技术是如何做到的呢?

    大型语言模型,比如我们所熟知的GPT-4,已经在很多方面展示出了强大的能力,比如回答复杂问题、生成解释和解决多步问题。然而,这些模型的规模通常很大,需要大量的计算资源,这在一定程度上限制了它们的应用。而Orca 2的出现,改变了这一局面。

    Orca 2的目标很明确,就是教导小型模型如何使用一系列的推理技巧,让它们能够在任务中表现最佳,不受模型大小的限制。比如,它会逐步处理问题、回忆再生成答案、抽取关键信息并生成解答等等。

    🔍Orca 2:小型语言模型的“超级大脑”

    所以,Orca 2就像是一个“超级大脑”,可以让小型语言模型具有更强大的推理能力。实际上,初步结果显示,Orca 2在需要推理的任务上,甚至可以与5到10倍大的模型相匹敌或超越。这一切都强烈地突显了赋予较小模型更好推理能力的潜力。

    🎓Orca 2:深度学习和教育的完美结合

    在Orca 2的训练中,研究人员还采用了指令调优和解释调优两种方法。这两种方法可以看作是模仿人类教育的过程,研究人员会以更大、更强大的模型为“老师”,让小型模型进行模仿学习。这样,小型模型不仅可以生成与“老师”风格相似的内容,还可以在推理和理解能力上有所提升。

    🏆Orca 2:未来的AI明星

    总的来说,Orca 2的出现,不仅为我们展示了小型语言模型的强大潜力,同时也为人工智能的未来发展打开了一扇新的大门。我们有理由相信,Orca 2将会在未来的AI领域中发挥更加重要的作用。

    以上就是我们今天的主题:Orca 2——如何让小型语言模型变得更“聪明”。感谢大家的收听,我们下期再见!

  • 顿悟Groking—深度洞察大型语言模型的学习方式

    亲爱的听众,大家好!👋欢迎来到我们的AI科技播客节目,我是您的主持人。今天我们要一起探索一个非常有趣也相当深奥的话题:“顿悟Groking——深度洞察大型语言模型的学习方式”。🧠💡📚

    🎈引子:神秘的AI世界

    在我们开始深入主题之前,我想先给大家讲一个小故事。你是否曾经有过这样的体验:面对一个复杂的问题,你琢磨了很久都无法找到答案,但突然有一天,你灵光一闪,想明白了所有的问题,这就是我们所说的“顿悟”或者“恍然大悟”。在人工智能的世界里,也存在着这样的“顿悟”现象。让我们一起来揭开AI的神秘面纱,看看它们是如何学习和理解我们的世界的。🕵️🔎

    📖语境学习(In-Context Learning)

    首先,我们要介绍的是一种称为“语境学习”的学习方式。在这种方式中,模型通过观察和学习词语或者短语在语境中的使用,理解它们的含义。也就是说,就像我们通过上下文来理解词汇的含义一样,AI模型也能通过查看输入和标签的样例,学习它们之间的映射关系。🤖🧠

    有趣的事实是,当模型足够大时,即使给定的标签和模型的语义先验相矛盾,它们也可以学习并理解这种矛盾的映射关系。这就像是说,即使我们告诉模型白天是黑夜,黑夜是白天,它们也能从这种混乱的情况中学习并理解新的映射关系。这种能力在小型模型中是无法实现的。🌓✨

    🎯无关标签的语境学习(SUL-ICL)

    接下来,我们要介绍的是另一种学习方式,叫做“无关标签的语境学习”(SUL-ICL)。在这种情况下,标签和输入的语义是完全无关的。也就是说,模型不能依赖于标签的语义来理解任务,而必须从输入和标签之间的映射关系中学习。这就像是我们给模型展示了一幅抽象画,让它去理解画中的意义。🎨🖼️

    然而,就算在这样的困难环境下,大型模型依旧能够很好地完成任务,而小型模型的表现则大打折扣。这就好像是说,即使我们给模型展示了最抽象最复杂的画作,它也能从中理解并学习到新的知识。这种能力在小型模型中是无法实现的。💪🦾

    📈指导调优(Instruction Tuning)

    在深度学习和AI领域,我们有一种叫做“指导调优”的技术。这种技术的核心思想是,通过对模型的微调,使模型更好地理解并执行特定任务。在无关标签的语境学习(SUL-ICL)环境中,指导调优能提高模型的性能,增强模型学习输入-标签映射的能力。🎛️🔧

    但是,也有一些有趣的现象。研究发现,进行指导调优的模型更不易接受反向的标签。也就是说,调优后的模型更倾向于依赖它们的语义先验,而不愿意接受与这些先验相冲突的新信息。这可能会限制模型的学习灵活性。⚖️🔄

    ✨结语

    今天,我们一起探索了大型语言模型的学习方式,看到了它们在语境学习中如何依赖或者覆盖语义先验,如何在无关标签的环境中学习输入-标签映射,以及指导调优如何影响模型的学习方式。🌈🎁

    AI的世界充满了未知和奇迹,就像我们的世界一样。虽然我们还有很多未解的问题,但是每一次的探索,每一次的“顿悟”,都让我们离理解AI的真相更近一步。让我们期待下一次的探索,期待下一次的“顿悟”。🚀🌟

    感谢大家的倾听,我们下期播客再见。再见!👋🎧

  • 深度压缩感知——深度学习与压缩感知的完美融合

    🚀 序言

    大家好!欢迎收听我们的播客,我是你们的主持人,一个热爱科学和技术的追梦者。今天,我们要谈论的主题是一个神奇且引人入胜的话题——深度压缩感知。听起来有点复杂对吧?别担心,我会尽量将它解释得通俗易懂,让我们一起在知识的海洋中探索、学习。

    🌠 挑战与奇迹:压缩感知

    首先,让我们来聊聊什么是压缩感知。压缩感知(Compressed Sensing)是一种优雅的框架,用于从压缩信号中恢复稀疏信号。例如,CS 可以利用自然图像的结构,仅从少量的随机测量中恢复图像。这是不是听起来像是进行了一次魔法操作呢?🎩🐰

    压缩感知的理论深入复杂,但是它的核心思想非常精妙——我们可以通过极少的采样点,实现了和全采样一样的效果。这就好像我们只需要看一只黑天鹅的一部分,就能推断出整个黑天鹅的样子。这样的思路是不是颠覆了你的认知呢?🤔

    🌐 深度学习与压缩感知的结合

    现在,让我们把目光转向我们的主题——深度压缩感知。DeepMind 的研究人员提出了一种全新的深度压缩感知框架,这是将压缩感知与深度学习相结合的一种尝试。

    深度压缩感知(DCS)框架通过联合训练生成器和通过元学习优化重建过程,显著提高了信号恢复的性能和速度。实际上,这就是合理地利用了压缩感知和深度学习的优点,形成了一种有效的、高效的框架。

    💡 新方法:改进 GAN 的新策略

    DeepMind 的研究人员还开发了一种使用来自鉴别器的梯度信息来改进 GAN 的新方法。你可能会问,GAN 是什么呢?GAN,全称生成对抗网络(Generative Adversarial Networks),是深度学习的一种方法,通过让两个神经网络互相斗争,来生成新的、以假乱真的数据。通过这种新的方法,我们可以进一步提升 GAN 的性能,打开了深度学习新的可能性。

    🎉 结语

    今天,我们一起走进了深度压缩感知的奇妙世界,看到了深度学习与压缩感知的完美结合。我们还了解了如何改进 GAN 的新方法,感受到了人工智能的无限可能。

    这就是今天的播客内容,希望你们喜欢。记住,无论前方的道路有多么曲折,知识的力量都可以指引我们找到前进的方向。下期播客,我们会继续探索科技的新前沿,期待你的收听!👋

    以上内容,主要参考了:深度压缩感知,新框架提升 GAN 性能 – 知乎

    在此,向所有在科技领域探索前沿,努力推动人类进步的研究人员们致敬!🙏 未来, 我们会继续关注这些有着深远影响的科技发展,与你一起分享,一起学习。谢谢大家,我们下期再见!👋🎙️🎉

  • 🚀人工智能新进展:RWKV-5模型的训练与性能对比🔍

    大家好,我是你们的播客主播,今天我们要一起探索一篇非常引人入胜的文章,关于人工智能的最新进展:RWKV-5模型的训练与性能对比。这是一篇首发于技术备忘录的深度科技文章,作者是在人工智能领域有着丰富经验的专家PENG Bo。

    🎯RWKV-5模型:全新升级,实力更胜一筹🎉

    这篇文章介绍的主角,RWKV-5,是一款支持100+种语言的多语言模型,同时代码能力也非常强大。然而,PENG Bo并没有止步于此,他正在努力训练这款模型,向更高的目标挺进。他分享了他的一些测试数据,从中我们可以看出,RWKV-5在训练完成后的英文能力(avg%)可以达到62%的SOTA水准。而且,RWKV-5的多语言能力(xavg%)也显著超过了现有的同规模模型。值得一提的是,尽管PENG Bo在训练时并没有加入多语言任务的数据,但RWKV-5的能力还是通过语言间的迁移实现了👏。

    🚀训练进展:超越前代,迎接新挑战💪

    让我们再深入看一下RWKV-5的训练进度。PENG Bo分享的数据显示,仅仅在训练进度达到30%时,RWKV-5 World v2 1.6B就全面超过了前代模型RWKV-4 World v1 1.6B的性能。这是一个令人惊叹的进步,我们有理由对RWKV-5的未来充满期待🌟。

    🛠️实现细节:深入解析,探索神秘代码🔬

    除此之外,PENG Bo还分享了RWKV-5的具体实现方式,包括一段详细的代码。这部分内容对于技术爱好者来说,无疑是一份珍贵的宝藏。通过研究这段代码,我们可以更深入地理解RWKV-5的内部结构和运作机制💡。

    🎈结语:期待未来,探索无限可能🎆

    最后,PENG Bo对未来的展望让我们更加憧憬。他提到,如果语料库数量再翻倍,我们可以想象,下一个版本World v3的性能将会有多强。这不仅让我们对RWKV-5的性能感到赞叹,也让我们对未来充满期待。

    这就是今天的播客内容,我们一起探索了RWKV-5模型的训练进展和性能对比。期待在未来的播客中,我们能一起见证更多的科技突破和人工智能的进步。再见!👋

  • RWKV/rwkv-5-world-3b的详细解读

    RWKV/rwkv-5-world-3b的详细解读

    https://huggingface.co/RWKV/rwkv-5-world-3b 该模型名为 RWKV/rwkv-5-world-3b,是一种用于文本生成的模型,使用Transformers库和PyTorch框架进行开发。

    🔍 模型的主要信息:

    • 模型类型:用于文本生成的 Transformer 模型
    • 语言库:PyTorch
    • 标签:rwkv5

    ⚙️ 模型的使用:

    该模型可以通过Hugging Face的Transformers库进行调用。页面提供了在CPU和GPU上运行模型的代码示例。代码分为几个部分:

    • 首先,从Hugging Face模型库导入AutoModelForCausalLM和AutoTokenizer。
    • 然后,使用模型和tokenizer的预训练版本来实例化模型和tokenizer。
    • 接着,定义一个文本提示,然后使用tokenizer处理这个提示,将其转换为模型可以理解的格式。
    • 最后,使用模型生成一段新的文本,并将结果解码为可读的文本。

    🖥️ 代码示例:

    在CPU上运行的代码:

    from transformers import AutoModelForCausalLM, AutoTokenizer
    
    model = AutoModelForCausalLM.from_pretrained("RWKV/rwkv-5-world-3b", trust_remote_code=True)
    tokenizer = AutoTokenizer.from_pretrained("RWKV/rwkv-5-world-3b", trust_remote_code=True)
    
    text = "\nIn a shocking finding, scientist discovered a herd of dragons living in a remote, previously unexplored valley, in Tibet. Even more surprising to the researchers was the fact that the dragons spoke perfect Chinese."
    prompt = f'Question: {text.strip()}\n\nAnswer:'
    
    inputs = tokenizer(prompt, return_tensors="pt")
    output = model.generate(inputs["input_ids"], max_new_tokens=256)
    print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True))

    在GPU上运行的代码:

    from transformers import AutoModelForCausalLM, AutoTokenizer
    
    model = AutoModelForCausalLM.from_pretrained("RWKV/rwkv-5-world-3b", trust_remote_code=True).to(0)
    tokenizer = AutoTokenizer.from_pretrained("RWKV/rwkv-5-world-3b", trust_remote_code=True)
    
    text = "请介绍北京的旅游景点"
    prompt = f'Question: {text.strip()}\n\nAnswer:'
    
    inputs = tokenizer(prompt, return_tensors="pt").to(0)
    output = model.generate(inputs["input_ids"], max_new_tokens=256, do_sample=True, temperature=1.0, top_p=0.1, top_k=0, )
    print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True))

    📊 模型的统计数据:

    • 上个月的下载量:108

    🚀 推理API:

    此模型支持Hugging Face的推理API,可以进行文本生成。

  • AI音乐创作:MustangoAI音乐创作:

    🎉在这个新的一期,我们将带领大家深入浸入AI音乐创作的海洋🎵,让我们一起探讨一款由declare-lab开发的Hugging Face Space项目——Mustango,以及一篇相关的论文“Mustango: Toward Controllable Text-to-Music Generation”📝。两者的链接已在节目简介里给出。

    🎼AI音乐创作的新篇章:Mustango🎸

    首先,我们来介绍一下Mustango。这是一个由declare-lab开发的项目,旨在推动可控的文本到音乐的生成。简单来说,你只需输入文本,Mustango就能为你生成相应的音乐。你甚至可以通过特定的文本指令来控制生成的音乐的和弦、节奏、速度以及音调。🎹这是多么令人惊艳的AI音乐创作工具啊!

    📚翻开知识的大门:Mustango的科技论文📖

    接下来,让我们一起看看关于Mustango的论文。这篇名为“Mustango: Toward Controllable Text-to-Music Generation”的论文,由Jan Melechovsky等作者撰写,详细描述了Mustango的设计和实现过程。在论文中,他们提出了一种名为MuNet的音乐领域知识启发的UNet子模块,将从文本提示中预测的音乐特定特性,以及一般的文本嵌入,整合到扩散去噪过程中。🔬

    🎁创新的数据增强方法和MusicBench数据集📈

    为了克服开放数据集的有限可用性问题,该团队提出了一种新颖的数据增强方法,包括改变音乐音频的和声、节奏和动态方面,并使用最先进的音乐信息检索方法来提取音乐特征,然后将这些特征以文本形式附加到现有的描述中。他们发布的MusicBench数据集包含超过52K的实例,并且在标题文本中包含了基于音乐理论的描述。🎁

    🥇实验结果:Mustango的音乐生成质量是最先进的🏆

    通过大量的实验,我们发现Mustango生成的音乐质量是最先进的,而且通过音乐特定文本提示的可控性在期望的和弦、节拍、调性和速度等方面大大超过了其他模型。🥇

    🚀总结:AI音乐创作的未来🌈

    Mustango的出现,让我们看到了AI音乐创作的无限可能。随着技术的进步,我们期待看到更多类似Mustango这样的项目出现,让更多的人能够享受到AI带来的便利。🚀

    🏁感谢收听

    在下期节目中,我们还将继续为您介绍更多有趣的AI项目和最新的科技成果。我们下期再见!👋

    [2311.08355] Mustango:迈向可控的文本到音乐生成 (arxiv.org)

    Mustango – a Hugging Face Space by declare-lab


    Mustango

    • 1. Mustango 由两个组件组成:1) 潜在扩散模型;2)MuNet。
      2. 借鉴 Tango(Ghosal 等人,2023) 和 AudioLDM(Liu 等人,2023b),利用潜在扩散模型 (LDM) 降低计算复杂性,同时保持扩散模型的表达能力。
      3. 具体来说,我们使用一个额外的变分自编码器 (VAE) with condition C 来构建潜在音频 prior z0,其中 In our case refers to a joint music and text condition。
      4. 通过前向扩散过程 (Markovian Hierarchical VAE),将潜在音频 prior z0 转化为标准高斯噪声 z N ∼ N (0, I),如公式 (1) 所示,其中预先设定的高斯噪声 (0)。
      5. 在反向过程中,从高斯噪声 z N ∼ N (0, I) 中重构潜在音频 prior z n−1,通过 Music-Domain-Knowledge-Informed UNet (MuNet) 去噪器,其噪声估算器定义为 where MHA is multi-headed attention used for cross attention, where Q, K, and V are query, key, and value, respectively。
      6. 在训练过程中,MuNet 采用的结构与 UNet(Ronneberger 等人,2015) 类似,包括多个下采样、中采样和上采样块,并通过跨注意力将条件纳入。
      7. 在 MuNet 中,我们提出了两个编码器,Enc b 和 Enc c,分别对节拍和和弦特征进行编码,利用最先进的 Fundamental Music Embedding (FME) 和 Music Positional Encoding (MPE) (Guo 等人,2023) 确保音乐特征得到适当的捕捉和保留几个基本音乐属性 (如平移不变性等)。
      8. 我们介绍了两个编码器的细节:Enc b 和 Enc c,它们从原始输入中提取节拍和和弦嵌入。
      9. 在节拍编码器 Enc b 中,使用方程 (10) 获得编码的节拍和和弦嵌入。
      10. 在获得编码的节拍和和弦嵌入后,我们使用两个额外的跨注意力层将音乐条件纳入去噪过程,与 TANGO(Ghosal 等人,2023) 相比,它仅使用一个跨注意力层来整合文本条件 (见方程 (9))。
      11. 这使得 MuNet 能够在去噪过程中利用音乐和文本特征,从而生成更可控和更有意义的音乐。
      12. 在训练阶段,我们使用教师强迫,因此利用地面真实节拍和和弦特征来约束音乐生成过程。
      13. 然而,在推理阶段,我们采用不同的方法。
  • 探索人工智能——Zephyr 7B Beta与GGUF的奇妙之旅🚀

    我们的主角是Zephyr 7B Beta和GGUF,它们都是我们这个广阔世界中的一颗璀璨星辰。🌟

    Zephyr 7B Beta与GGUF的特色🌈

    首先,让我们来了解一下Zephyr 7B Beta和GGUF。Zephyr 7B Beta是由Hugging Face H4团队开发的一个模型,GGUF则是由llama.cpp团队在2023年8月21日推出的一种全新格式,它取代了以前的GGML格式。GGUF已经得到了多个客户端和库的支持,包括llama.cpp、text-generation-webui、KoboldCpp、LM Studio、LoLLMS Web UI、Faraday.dev、ctransformers、llama-cpp-python和candle等。👏

    GGUF的兼容性⚙️

    GGUF文件与llama.cpp的兼容性始于2023年8月27日的d0cee0d提交。除此之外,它还与许多第三方的用户界面和库兼容。🔗

    GGUF的量化方法🔬

    接下来,我们来深入探讨一下GGUF的量化方法。GGUF采用了一种新的量化方法,包括2位、3位、4位、5位和6位的量化。这些不同的量化方法使模型在保证质量的同时,能够以更小的体积进行存储和传输,从而极大地提高了效率。🚀

    如何下载GGUF文件💾

    很多人可能会对如何下载GGUF文件感到困惑。实际上,你并不需要下载整个库,而只需要选择你想要的文件进行下载即可。例如,在text-generation-webui中,你可以直接输入模型库:TheBloke/zephyr-7B-beta-GGUF,然后输入你想要下载的文件名,如:zephyr-7b-beta.Q4_K_M.gguf,再点击下载即可。如果你想在命令行中下载多个文件,可以通过安装huggingface-hub Python库来实现。📥

    结语🎈

    以上就是我们今天的内容,人工智能的世界,充满了无限的可能,让我们一起期待它们为我们的生活带来更多的便利和乐趣。

  • Anima—开源的33B中文大型语言模型

    🎉 引言

    👋 大家好,欢迎来到我们的播客节目。我知道你们每次来,都是期待听到一些新奇、有趣、颠覆常规的内容。那么今天,我带给大家的就是一项来自人工智能领域的重大突破——它名为Anima

    💡 什么是Anima?

    Anima,这是一个开源的33B中文大语言模型(LLM),是目前市面上第一个开源的如此庞大的中文LLM。但不仅如此,Anima还支持DPO对齐训练,同时也是我们开源的支持100k上下文窗口的模型。你也许会问,这些术语是什么意思,为什么它们如此重要。别急,接下来我会一一解释给大家听。

    🚀 Anima的特性

    首先,让我们来了解一下什么是大语言模型。简单来说,大语言模型是一种人工智能模型,它能理解和生成人类语言。而33B,这个数字代表的是模型的规模,也就是模型的参数数量。在Anima中,这个数字达到了330亿,这意味着Anima具有极强的理解和生成语言的能力。

    接下来,我要介绍的是DPO对齐训练。DPO,全称为Distributed Policy Optimization,是一种分布式策略优化技术。它可以帮助我们高效地训练大规模的人工智能模型,让它们可以更好地理解和生成语言。

    最后,我要说的是100k上下文窗口。在语言模型中,上下文窗口的大小决定了模型可以理解的语境范围。100k的上下文窗口意味着Anima可以理解更长的文本,更丰富的语境,从而生成更准确、更自然的语言。

    🌟 AirLLM的升级

    而最新的更新,是我们引入了AirLLM。这是一个库,它可以帮助你使用单个GPU,只需4GB的内存,就能推断70B的大型语言模型。这意味着,你不再需要拥有强大的计算资源,也可以使用超大规模的语言模型。这无疑为个人开发者和小型团队打开了一扇新的大门。

    ⭐ 结语

    Anima,这是一项突破性的工作,它让我们看到了人工智能的可能性和未来。无论你是一个开发者,还是对人工智能有兴趣的听众,我都邀请你去看看Anima的GitHub页面。你会发现,那里有一个全新的世界,等待着你的探索。谢谢大家,我们下期节目再见!

    👋 再见,祝你有美好的一天!

  • ICL vs Fine-tuning:迁移学习中的两种方法

    导语:
    迁移学习是机器学习领域中的一个重要概念,它可以将在一个任务上学到的知识迁移到另一个任务上。在迁移学习中,有两种常见的方法:ICL(Instance-based Cross-Lingual Learning)和Fine-tuning。本文将逐步思考并详细解析这两种方法的原理和适用场景。

    正文:

    1. ICL(Instance-based Cross-Lingual Learning)
      ICL是一种基于实例的跨语言学习方法,它通过在源语言和目标语言之间建立对应关系来实现知识迁移。具体而言,ICL使用源语言的标注数据和目标语言的未标注数据进行训练,然后将源语言的模型参数应用到目标语言的任务上。这种方法的优势在于可以利用源语言的丰富标注数据来提升目标语言任务的性能,尤其适用于目标语言数据稀缺的情况。
    2. Fine-tuning
      Fine-tuning是一种微调模型的方法,它通过在源任务上预训练一个模型,然后将该模型的参数应用到目标任务上,并在目标任务上进行进一步的训练。与ICL不同的是,Fine-tuning不需要源语言和目标语言之间的对应关系,而是通过共享模型参数来实现知识迁移。这种方法的优势在于可以利用源任务的大规模标注数据来提升目标任务的性能,尤其适用于目标任务和源任务之间存在一定的相似性。
    3. ICL vs Fine-tuning
      ICL和Fine-tuning在迁移学习中有着不同的应用场景。ICL适用于源语言和目标语言之间存在对应关系的情况,例如机器翻译任务中的不同语言对。通过利用源语言的标注数据和目标语言的未标注数据,ICL可以有效地提升目标语言任务的性能。而Fine-tuning适用于源任务和目标任务之间存在一定的相似性的情况,例如在图像分类任务中,可以通过在大规模图像分类任务上预训练一个模型,然后将该模型应用到目标图像分类任务上进行微调,从而提升目标任务的性能。

    结论:
    ICL和Fine-tuning是迁移学习中常用的两种方法,它们分别适用于不同的应用场景。ICL适用于源语言和目标语言之间存在对应关系的情况,可以利用源语言的标注数据提升目标语言任务的性能;而Fine-tuning适用于源任务和目标任务之间存在一定的相似性的情况,可以利用源任务的大规模标注数据提升目标任务的性能。


    Learn more:

    1. 4种简单的博客文章模板(以及何时使用它们)
    2. 创建博客文章 · Shopify 帮助中心
    3. 撰写博客文章 · Shopify 帮助中心
  • Monarch Mixer: 重新审视BERT,无需注意力机制或多层感知器

    引言:
    近年来,Transformer模型在自然语言处理和计算机视觉等领域取得了巨大成功。然而,我们是否只有Transformer这一种模型可以达到如此惊人的性能呢?这是一个我们一直在思考的问题。为了回答这个问题,斯坦福大学的研究人员提出了一种新的架构——Monarch Mixer(M2),它在序列长度和模型维度上都是次二次的,同时在性能上能够与Transformer媲美甚至超越。

    Monarch Mixer架构:
    Monarch Mixer的基本思想是用Monarch矩阵替换Transformer的主要组件。Monarch矩阵是一类结构化矩阵,它广义上推广了快速傅里叶变换(FFT),具有次二次的计算复杂度,同时在硬件上更加高效和表达能力强。Monarch Mixer使用由Monarch矩阵构建的层来实现序列内的混合(类似Transformer中的注意力机制)和模型维度上的混合(类似Transformer中的多层感知器)。与MLP Mixer和ConvMixer等工作类似,Monarch Mixer将所有组件替换为单一的原语,从而实现了全面的次二次架构。

    Monarch Mixer与BERT的结合:
    作为对这一思想的首次验证,研究人员选择了BERT作为目标模型。他们将BERT中的注意力机制替换为受到注意力自由模型的启发,并用一些简单的块对角矩阵替换了MLP。所有这些操作都可以用Monarch矩阵来实现。此外,他们还对模型进行了一些微调,如添加额外的卷积连接和在微调过程中使用平均池化等。通过这些改进,他们成功地构建了Monarch Mixer BERT(M2-BERT)模型。

    M2-BERT的性能:
    研究人员对M2-BERT模型进行了评估,并与标准的BERT模型进行了比较。令人惊讶的是,即使在参数数量较少的情况下,M2-BERT模型的性能也相当不错。例如,M2-BERT-base模型(80M参数)在GLUE任务上的平均得分超过了标准BERT-base模型(110M参数)。此外,通过参数匹配,M2-BERT-base模型的性能还有进一步提升。

    长序列的优势:
    Monarch Mixer架构的一个潜在优势是在处理长序列时的速度和可扩展性。由于M2在模型维度上是次二次的,因此可以减少计算量。而序列混合器在序列长度上也是次二次的,这意味着它具有处理更长序列的潜力。

    结论:
    Monarch Mixer是一种新颖的架构,它通过使用次二次的Monarch矩阵替换Transformer的组件,实现了与Transformer相媲美甚至超越的性能。尽管目前还处于早期阶段,但M2-BERT模型已经展现出了很大的潜力。未来的研究将进一步探索Monarch Mixer架构的优化和应用。


    Learn more:

    1. Monarch Mixer: Revisiting BERT, Without Attention or MLPs · Hazy Research
    2. 替代Transformer!斯坦福提出新架构:Monarch Mixer,无需Attention,性能更强~-腾讯云开发者社区-腾讯云
    3. Monarch Mixer:介绍一种性能比Transformer更强的网络架构-CSDN博客
  • QLoRA: 高效微调大型语言模型的利器

    引言:
    在机器学习领域,大型语言模型(LLM)是当前热门话题。想象一下,你是一名机器学习工程师,你的公司拥有GPU和开源的LLM,比如LLAMA/Falcon。你的任务是为每个客户构建工具,每个客户都有独特的需求。你为每个客户微调模型,每个人都满意。但是当你有成千上万个客户时会发生什么?部署成千上万个对GPU需求很高的LLM是不可行的,除非你有大量的GPU供应。你需要一种策略,可以在不耗尽资金或超负荷存储的情况下为每个客户微调模型。这就是QLoRA和LoRA发挥作用的地方。

    QLoRA和LoRA的背景:
    QLoRA和LoRA是一种高效微调大型语言模型的技术。在微调过程中,我们通常需要调整模型的权重参数,以适应特定的任务。传统的微调方法需要逐步更新权重参数,这会导致计算和存储开销巨大。而QLoRA和LoRA则提供了一种更高效的方法,可以将微调过程中的权重变化存储起来,并在需要时一次性更新模型的权重,从而节省了计算和存储资源。

    QLoRA和LoRA的工作原理:

    • LoRA(Low-Rank Adapters):LoRA的核心思想是将可调整的低秩矩阵注入到Transformer架构的每一层中。这些低秩矩阵充当适配器的角色,使得模型可以根据特定任务进行调整和专门化,同时最大限度地减少额外的参数数量。
    • QLoRA(Quantized Low-Rank Adapters):QLoRA是LoRA的扩展,它在微调过程中引入了量化技术,以增强参数的效率。QLoRA利用LoRA的原理,并引入了4位NormalFloat(NF4)量化和双重量化技术,进一步减少了存储和计算资源的使用。

    QLoRA和LoRA的优势:

    • 减少参数开销:QLoRA和LoRA通过使用低秩矩阵而不是微调所有参数,显著减少了可调参数的数量,使得模型在存储和计算上更加高效。
    • 高效切换任务:QLoRA和LoRA允许共享预训练模型用于多个任务,减少了维护独立实例的需求。这样在部署过程中可以快速无缝地切换任务,减少了存储和切换成本。
    • 无推理延迟:QLoRA和LoRA的线性设计确保与完全微调的模型相比没有额外的推理延迟,适用于实时应用。

    QLoRA和LoRA的应用前景:
    QLoRA和LoRA为微调大型语言模型提供了高效的解决方案,可以在保证任务性能的同时减少可调参数的数量。这些技术在自然语言处理领域具有广泛的应用前景,可以帮助我们更好地利用大型语言模型的知识和能力。


    Learn more:

    1. GitHub – artidoro/qlora: QLoRA: Efficient Finetuning of Quantized LLMs
    2. Understanding LoRA and QLoRA – The Powerhouses of Efficient Finetuning in Large Language Models | by Murali Manohar | Medium
    3. Fine-Tuning of Large Language Models with LoRA and QLoRA
  • Embroid: 无标签纠正和改进语言模型预测

    在最近的研究中,一项名为”Embroid”的新技术引起了广泛关注。这项技术可以在没有标签的情况下,对大型语言模型(LLM)的预测进行纠正和改进。通过使用这种技术,我们可以提高LLM在各种自然语言处理任务中的性能,而无需依赖于标注数据。本文将逐步思考并详细解析Embroid技术的原理和应用。

    Embroid技术的原理

    Embroid技术的核心思想是利用嵌入空间的平滑性质来改进LLM的预测。嵌入空间是指模型如BERT中的向量表示空间,其中相似的样本在空间中的距离较近。Embroid利用这种平滑性质,通过比较LLM预测与其邻居预测的差异,来识别预测不一致的情况。然后,通过调整这些预测,使其与邻居的预测一致,从而提高整体的预测准确性。

    Embroid技术的应用

    Embroid技术在各种任务中都能够改进LLM的预测性能。例如,在GPT-JT模型上,Embroid技术在89.1%的情况下改进了预测结果,平均提升了7.3个F1分数。类似的改进效果也在GPT-3.5等API访问模型中观察到。

    此外,Embroid技术可以与不同的提示策略相结合,如AMA、chain-of-thought和demonstration-selection engineering,进一步提高性能。同时,通过选择适当的嵌入模型,Embroid技术可以定制到特定领域,例如使用HuggingFace上提供的法律嵌入模型,可以改进通用领域LLM的性能。

    总结

    Embroid技术是一种无标签纠正和改进LLM预测的新方法。通过利用嵌入空间的平滑性质,Embroid技术能够识别并纠正LLM预测中的不一致之处,从而提高预测的准确性。该技术在各种任务中都表现出良好的性能,并且可以与不同的提示策略和嵌入模型相结合,进一步提升性能。Embroid技术的出现为无标签数据的利用提供了新的可能性,为语言模型的发展带来了新的机遇。

  • Embroid: 无标签纠正和改进LLM预测

    近年来,人工智能领域取得了巨大的进展,其中包括了语言模型的发展。语言模型是一种能够理解和生成自然语言的模型,如BERT和GPT。然而,这些模型在进行预测时通常需要大量的标记数据来训练,这对于一些特定任务来说可能是一项耗时且昂贵的工作。

    幸运的是,研究人员提出了一种名为Embroid的方法,可以在没有标签数据的情况下改进和纠正语言模型的预测性能。Embroid利用了语言模型的嵌入空间的平滑性质,即在嵌入空间中相似的样本通常具有相同的标签。这意味着,如果一个样本的预测与其在嵌入空间中的最近邻的预测不一致,那么它很可能是错误的。

    那么,Embroid是如何工作的呢?首先,它使用语言模型作为分类器,通过提示来进行预测。这样,领域专家只需要花费时间编写提示,而不需要手动标记大量的数据。然而,设计有效的提示并不容易,微小的更改可能会对预测结果产生显著影响。

    接下来,Embroid利用嵌入空间的平滑性来检查语言模型的预测是否正确。如果一个样本的预测与其最近邻的预测不一致,那么它很可能是错误的。通过调整这些预测,使其与邻居的预测相匹配,Embroid可以提高整体的预测准确性。

    为了避免过度依赖单个嵌入空间,Embroid还进行了多个嵌入空间的比较。这样可以在不同模型的嵌入空间中找到更准确的预测结果。通过使用弱监督的方法,将多个嵌入空间的预测结果结合起来,Embroid生成了最终的纠正预测,而无需标记数据。

    研究人员进行了一系列实验证明,Embroid在各种任务上都能够改善原始提示的预测结果。无论是在GPT-JT还是GPT-3.5上,Embroid都能够显著提高预测的准确性。这项研究的结果为我们提供了一种无需标签数据就能改进和纠正语言模型预测的方法,为未来的研究和应用提供了新的思路。

    总之,Embroid是一种创新的方法,通过利用嵌入空间的平滑性来改进和纠正语言模型的预测性能。它不仅减少了手动标记数据的工作量,还提高了预测的准确性。这项研究的成果对于推动自然语言处理领域的发展具有重要意义,为我们在实际应用中更好地利用语言模型提供了新的可能性。

  • Embroid:无需标签纠正和改进LLM预测

    导语:
    在人工智能领域,研究人员一直在探索如何提高预测模型的准确性。最近,斯坦福大学、Anthropic和威斯康星大学麦迪逊分校的研究人员开发了一种名为Embroid的方法,可以在不使用标签的情况下纠正和改进LLM(语言模型)的预测。本文将详细解析Embroid方法的原理和应用。

    1. Embroid方法的原理:
      Embroid方法基于一种名为嵌入函数的计算方法,通过计算数据集在不同嵌入函数下的多个表示,并利用LLM的预测一致性来识别错误预测[1]。具体而言,Embroid方法通过将数据集输入LLM,得到预测结果。然后,通过计算不同嵌入函数下的数据集表示,可以得到多个表示。最后,利用LLM的预测一致性来识别错误预测,并进行纠正和改进。
    2. Embroid方法的应用:
      Embroid方法在不同任务上的性能提高了7.3个百分点至GPT-JT和4.9个百分点至GPT-3.5[1]。这意味着Embroid方法可以帮助改进LLM在各种任务中的预测准确性,从而提高人工智能系统的性能。例如,在自然语言处理任务中,Embroid方法可以帮助纠正和改进LLM对文本的情感分析、命名实体识别等预测。
    3. Embroid方法的优势:
      Embroid方法的优势在于不需要使用标签来进行训练和纠正。传统的方法通常需要大量标记好的数据集来训练模型,而Embroid方法可以通过利用LLM的预测一致性来纠正错误预测,从而避免了标签数据集的依赖。
    4. Embroid方法的意义:
      Embroid方法的出现对于解决标注数据集困难的问题具有重要意义。标注数据集的构建通常需要大量的时间和人力成本,而Embroid方法可以通过利用LLM的预测一致性来提高预测准确性,从而减少对标注数据集的依赖。这将为人工智能技术的发展提供更多的可能性。

    总结:
    Embroid方法是一种无需标签纠正和改进LLM预测的方法。通过计算不同嵌入函数下的数据集表示,并利用LLM的预测一致性来识别错误预测,Embroid方法可以提高人工智能系统在各种任务中的预测准确性。这一方法的出现对于解决标注数据集困难的问题具有重要意义,并为人工智能技术的发展带来更多的可能性。

    参考文献:
    [1] AI前沿速报0817:OpenAI首次公开收购 – 知乎
    [1] 研究人员开发出一种AI方法,可以自动纠正预测错误 – 知乎


    Learn more:

    1. ​AI前沿速报0817:OpenAI首次公开收购 – 知乎
  • FlashFFTConv:使用张量核心进行长序列高效卷积

    导语:本文将详细解析FlashFFTConv,一种使用张量核心进行长序列高效卷积的算法。我们将介绍FlashFFTConv的原理、优势以及应用领域。

    1. 引言

    卷积模型在处理长序列任务时展现出了出色的推理能力,例如长文本建模、音频分析和DNA建模等。然而,与经过优化的Transformer相比,卷积模型在计算时间上仍存在瓶颈。其中一个主要瓶颈是快速傅里叶变换(FFT)算法,该算法可以在O(NlogN)的时间复杂度内计算长卷积,但硬件利用率较低。为了解决这个问题,我们提出了FlashFFTConv算法,一种在GPU上高效计算FFT卷积的新算法[2]

    2. FlashFFTConv算法原理

    FlashFFTConv算法通过Monarch分解将FFT卷积的步骤融合在一起,并利用现代GPU上的张量核心进行计算。该算法的主要思想是将FFT分解为矩阵乘法操作,并在长序列情况下实现步骤的融合。具体而言,FlashFFTConv算法通过以下两个方面解决了FFT卷积的瓶颈[2]

    • 使用Monarch分解将FFT分解为矩阵乘法操作,从而可以利用张量核心进行计算。
    • 将多个FFT卷积步骤融合在一起,即使对于长序列也能高效计算。

    3. FlashFFTConv的优势

    FlashFFTConv算法相较于传统的FFT算法具有以下优势[2]

    • 高效利用现代GPU上的张量核心,加速卷积计算。
    • 在序列长度为2K时,FlashFFTConv开始与FlashAttention-v2性能相匹配,并在更长的序列上表现出色,最高可达到62%的MFU。
    • 相较于最优化的Transformer,FlashFFTConv在长序列卷积任务上具有更高的计算效率。

    4. FlashFFTConv的应用领域

    FlashFFTConv算法在以下领域具有广泛的应用前景[2]

    • 长文本建模:FlashFFTConv可以用于处理长文本序列,例如自然语言处理任务。
    • 音频分析:FlashFFTConv可以用于处理音频序列,例如语音识别和音乐生成等任务。
    • DNA建模:FlashFFTConv可以用于处理DNA序列,例如基因组学研究和生物信息学分析等任务。

    5. 结论

    FlashFFTConv是一种高效的卷积算法,通过利用张量核心和Monarch分解,可以加速长序列的卷积计算。该算法在长序列任务中具有广泛的应用前景,并在性能上超越了传统的FFT算法和优化的Transformer。我们期待看到FlashFFTConv在各个领域的进一步应用和发展。

    参考文献

    1. GitHub – HazyResearch/flash-fft-conv: FlashFFTConv
    2. FlashFFTConv: Efficient Convolutions for Long Sequences with Tensor Cores · Hazy Research

    Learn more:

    1. GitHub – HazyResearch/flash-fft-conv: FlashFFTConv
    2. FlashFFTConv: Efficient Convolutions for Long Sequences with Tensor Cores · Hazy Research
    3. FlashFFTConv: Efficient Convolutions for Long Sequences with Tensor Cores | OpenReview
  • 简单长卷积用于序列建模的详细解析

    在序列建模中,我们一直在研究如何获得良好的性能,并开发了新的系统技术和深度学习架构。今天,我们将介绍一个简单的基准线方法,它可以取得出人意料的好效果:只需使用与输入序列相同大小的长卷积!事实证明,我们只需要简单的正则化,卷积就可以与复杂的序列模型(如S4)在Long Range Arena和文本建模等基准测试中相媲美。[1]

    长卷积的正则化:
    我们首先提出了一个问题:如果将SSMs(State Space Models)替换为长卷积,会发生什么?代码非常简单,我们可以使用FFT卷积以O(NlogN)的时间复杂度计算长卷积(而不是PyTorch的Conv1D中的O(N^2))。然而,如果在Long Range Arena等基准测试上尝试这种方法,你会发现性能落后于SSMs。[1]

    为什么会这样呢?如果你可视化学习到的卷积核,你会发现一个潜在的答案:长卷积核非常不平滑和嘈杂!为了解决这个问题,我们发现只需应用一个简单的正则化操作——Squash操作——到卷积核权重上即可。这个操作非常简单,只需要一个超参数λ。如果在训练过程中应用这个操作,你会得到在时间域上更稀疏、在频率域上更平滑的卷积核。在Long Range Arena基准测试上,这个小改变就足以与SSMs的性能相匹配。[1]

    长卷积的应用:
    我们进一步评估了长卷积在图像分类、文本建模和脑fMRI分析等领域的性能,并发现长卷积在所有这些领域都表现出色。特别是在文本建模中,我们将H3层中的SSMs替换为卷积,发现这个新的H3-Conv模型在PILE数据集上的性能与H3相当,并且优于Transformers。[1]

    未来展望:
    我们的论文中还包括更多关于长卷积在其他领域的评估,例如图像分类和脑fMRI分析等有趣的应用。我们还开发了一些新的系统优化方法,以提高长卷积的运行时性能。此外,我们还发现了长卷积与Monarch矩阵理论之间的有趣联系,这使得我们可以在卷积中插入额外的参数,从而获得更好的质量。[1]

    结论:
    简单的长卷积在序列建模中表现出色,并且只需添加简单的正则化操作就可以与复杂的序列模型相媲美。这种方法在多个领域都取得了良好的结果,并且具有较高的运行时性能。我们对这些方向非常感兴趣,并且希望能够在开放的环境中进一步发展这些方法。[1]


    Learn more:

    1. Simple Long Convolutions for Sequence Modeling · Hazy Research
    2. Simple Hardware-Efficient Long Convolutions for Sequence Modeling | OpenReview
    3. GitHub – HazyResearch/safari: Convolutions for Sequence Modeling
  • RWKV-5详细解析:理解并行训练的RNN网络

    RWKV-5是一种可以并行训练的RNN网络,相较于基于Transformer的模型,它具有更低的自回归解码复杂度。本文将从多个角度详细解析RWKV-5模型,帮助读者更好地理解该模型的原理和应用

    一、RWKV-5模型的背景和意义
    1.1 Transformer模型的挑战 [1]

    • Transformer模型是一种革命性的神经网络架构,但在处理长序列时面临内存和计算复杂度的问题。
    • 复杂度与序列长度呈二次关系,限制了其在大语言模型中的应用。

    1.2 RWKV-5模型的优势 [1]

    • RWKV-5利用了循环神经网络的思想,重新构造了注意力机制,使得复杂度与序列长度之间呈线性关系。
    • 可以并行训练,提高了训练效率。
    • 更适应大语言模型的自回归解码推理。

    二、RWKV-5模型的核心思想
    2.1 注意力机制和循环神经网络的核心思想 [1]

    • 注意力机制:通过全局建模和并行计算,提高模型对长距离依赖关系的建模能力。
    • 循环神经网络:将时刻t的输出作为时刻t+1的输入,适用于自回归解码推理。

    2.2 RWKV-5模型中的AFT注意力机制 [1]

    • 将点积转化为张量积,带来了并行性。
    • 张量积建模相互作用,提高了模型的表达能力。

    三、RWKV-5模型的架构和设计
    3.1 RWKV-5的整体架构 [1]

    • 包括Time-Mix模块和Channel-Mix模块。
    • Time-Mix模块将循环神经网络思想融入AFT的注意力机制中。
    • Channel-Mix模块用于处理通道之间的信息交互。

    3.2 RWKV-5的位置编码设计 [1]

    • 位置编码用于表示输入序列中单词的位置信息。
    • RWKV-5采用了一种特殊的位置编码设计,具体细节可参考原论文。

    四、RWKV-5模型的应用领域

    • RWKV-5模型在大语言模型的自回归解码推理中具有广泛的应用前景。
    • 可以用于文本生成、机器翻译、语音识别等任务。

    结语:
    通过对RWKV-5模型的详细解析,我们了解到它是一种可以并行训练的RNN网络,相较于基于Transformer的模型具有更低的自回归解码复杂度。RWKV-5模型的核心思想是将循环神经网络和AFT注意力机制相结合,通过张量积建模相互作用,提高了模型的表达能力。该模型在大语言模型的自回归解码推理中具有广泛的应用前景。

    参考文献:
    [1] 小白视角解读RWKV论文模型 – 知乎
    [2] RWKV的RNN CNN二象性 – 知乎


    Learn more:

    1. 小白视角解读RWKV论文模型 – 知乎
    2. RWKV的RNN CNN二象性 – 知乎
    3. RWKV–一种具有Transformer级别LLM性能的RNN-腾讯云开发者社区-腾讯云
  • 探索Zephyr-7B-β:一款掀起LLM新浪潮的强大语言模型

    大家好,今天我要向你们介绍一个在人工智能领域中备受瞩目的明星——Zephyr-7B-β,这是一款性能高超的大型语言模型(LLM)。它的出现不仅改变了我们对AI的认知,更为我们的日常生活带来了无尽的可能。

    Zephyr-7B-β是Zephyr系列的第二个模型,是基于Mistralai/Mistral-7B-v0.1并使用直接偏好优化(DPO)在公开可用的合成数据集上进行训练的微调版本。这款模型在发布时,在MT-Bench和AlpacaEval基准上的表现已经超越了许多其他同类产品,堪称7B类的聊天模型中的佼佼者。

    Zephyr-7B-β:小巧却强大

    虽然Zephyr-7B-β在模型大小上只有7B参数类似GPT的模型,但它在公开可用的合成数据集上进行微调后的性能却令人惊叹。特别是在MT-Bench的多个类别上,与Llama2-Chat-70B等较大的开放模型相比,Zephyr-7B-β具有较强的性能。

    然而,无论任何事物都不可能完美,对于更复杂的任务,如编码和数学等,Zephyr-7B-β的表现仍有待提升。它在这些方面的表现暂时无法与更专业的模型相比,但我们相信,随着研究的深入,这种差距会逐步缩小。

    Zephyr-7B-β:更多的可能性

    Zephyr-7B-β最初是在经过过滤和预处理的UltraChat数据集上进行微调的,这个数据集包含了由ChatGPT生成的各种合成对话。随后,我们在openbmb/UltraFeedback数据集上进一步将模型与TRL的DPOTrainer对齐。这个数据集包含了按GPT-4排名的64k个提示和模型完成情况。

    这就意味着,Zephyr-7B-β可以用于聊天,你可以查看我们的演示来测试其功能。同时,这款模型的代码已经在GitHub上开放,对于有兴趣的同学,可以自行下载研究。

    Zephyr-7B-β:未来的挑战

    然而,我们也需要看到,尽管Zephyr-7B-β的表现在许多方面都非常出色,但它也存在一些问题。例如,它尚未通过RLHF等技术与人类偏好保持一致,也未通过ChatGPT等响应的循环过滤进行部署,因此该模型可能会产生有问题的输出,特别是在提示时。

    此外,尽管我们知道用于训练Zephyr-7B-β的数据集主要包含了由ChatGPT生成的各种合成对话,但我们仍然不清楚用于训练基本模型(mistralai/Mistral-7B-v0.1)的语料库的大小和组成。这些问题都是我们在未来需要解决的挑战。

    Zephyr-7B-β的出现,无疑为我们展示了大型语言模型的强大潜力。通过不断的研究和改进,我们有理由相信,未来的Zephyr系列将会带给我们更多的惊喜~

  • 一次神奇的AI旅程:Zephyr-7B模型与Lora训练

    大家好,今天我要给大家分享的是关于神奇的Zephyr-7B模型和Lora训练的故事。这是一次跨越三大洲的合作,让我们一起探索这个令人兴奋的AI世界。

    Zephyr:直接蒸馏语言模型对齐

    在 AI 的世界中,出现了一款名为 Zephyr-7B 的模型,它的出现可谓是一次划时代的突破。那么,Zephyr-7B 是如何诞生的呢?

    几个月之前,一个位于巴黎的团队发布了他们的第一个模型:Mistral 7B。这个模型虽然体积小巧,但性能强大,在基准测试中超过了所有同类模型,更令人振奋的是,这是一个开源项目。

    然后,Hugging Face H4团队的两名成员在一次小聚中,讨论了使用斯坦福大学新发表的 DPO 方法对 Mistral 7B 这个模型进行微调的可能性。他们在 HF hub 上找到了一些公开的数据集,包括由面壁智能和清华大学 NLP 共同支持的 OpenBMB 开源的两个大规模、高质量的微调数据集:UltraFeedback 和 UltraChat。

    UltraFeedback 是一个大规模、多样化、细粒度 的偏好数据集。UltraChat 则是高质量的对话数据集,包含了 150 余万条多轮指令数据。

    经过几轮实验,使用 OpenBMB 两个数据集训练出来的新模型非常强大,是 H4 团队在伯克利和斯坦福的基准测试中见过的最强模型,并在之后被命名为 Zephyr模型。Zephyr-7B-alpha 的 MT-Bench 平均得分7.09,超越了 Llama2-70B-Chat。

    这引发了一个重要的思考:一个基于高质量数据集的 7B 模型竟然打败了参数十倍之大的 LLaMA2-70B-Chat,这说明了什么?这说明,底层的数据工作才是最稀缺的和有时间价值的,这或许是各家各派大模型在百模大战中的突破口之一。

    然后我们看到,Zephyr的优秀性能还得归功于使用了由斯坦福大学和CZ Biohub不久前合作提出的 DPO 方法。与传统的 PPO 强化学习方法不同,DPO 方法舍弃了强化学习,要比 PPO 稳定得多。

    DPO的简单解释是:它绕过了建模奖励函数,相当于直接在偏好数据上优化模型,它解决了人类反馈的强化学习训练难、训练成本高的问题。

    Zephyr-7B-beta的变革

    进一步的,开发二代模型 Zephyr-7B-beta 时,团队思考了大模型所用的蒸馏监督微调(dSFT)。然而,用这种方法模型是不对齐的,不能很好地生成符合用户意图的输出。

    所以,团队尝试使用AI反馈(AI Feedback,AIF)的偏好数据,用一个“教师模型”对输出进行排名,形成一个数据集,然后应用蒸馏直接偏好优化(dDPO)进行训练。这样,训练出的模型就能更好地对齐用户的意图,生成更好的输出。

    Zephyr-7B-beta的测试数据也验证了这种方法的有效性。比对7B版本的模型,这款新模型在MT-Bench上的平均得分达到了7.18,几乎是目前所有模型中的最高分。

    低成本训练Zephyr

    接下来,我们来看看如何用低成本的方式训练Zephyr。这里就要提到一个名为”alignment-handbook”的项目。

    “alignment-handbook”是一个非常实用的项目,为大家提供了全面的训练步骤,包括环境配置、SFT训练、DPO训练等。通过这个指南,你可以方便地在自己的电脑上完成训练。

    使用SFT训练,我们可以在预训练模型的基础上进行微调,以达到我们期望的效果。而DPO训练则可以直接在偏好数据上优化模型。这两种训练方法都非常高效,可以在短时间内得到高质量的模型。

    Lora训练

    最后,我要与大家分享的是Lora训练。Lora是一种新的训练方法,通过给模型添加一些额外的参数,可以让模型的性能得到进一步的提升。

    Lora训练虽然需要额外的计算资源,但它可以显著提高模型的性能。所以,如果你有足够的计算资源,我强烈推荐你尝试使用Lora训练。

    总结

    在这篇文章中,我向大家介绍了Zephyr-7B模型和Lora训练的神奇故事。希望通过这个故事,你能感受到AI技术的魅力,也希望你能够通过学习和实践,将这些技术应用到你的工作和生活中,让AI技术为你带来更多的便利和乐趣。

    在未来的日子里,我相信我们会看到更多的突破和创新。让我们期待这个未来,一起探索这个充满无限可能的AI世界。