分类: AGI

  • 数字版“疯牛病”:生成模型的自噬之路

    引言

    众所周知,不管是文本还是视觉领域,各种生成模型正在以无法阻挡的势头“肆虐”互联网。虽然大家都明白,实现真正的通用人工智能(AGI)还有很长的路要走,但这并不妨碍人们越来越频繁地利用生成模型来创作和分享内容。君不见,很多网络文章已经配上了Stable Diffusion模型生成的插图;君不见,很多新闻风格已经越来越显现出ChatGPT的影子。看似无害的这种趋势,正悄然引发了一个问题:我们是否应该对互联网上充斥的生成模型数据保持警惕?

    近期发表的论文《Self-Consuming Generative Models Go MAD》揭示了一种令人担忧的可能性,那就是生成模型正在互联网上的无节制扩张,可能会导致一场数字版的“疯牛病”疫情。本文将带您一起学习这篇论文,探讨其可能带来的影响。

    “食自己”

    一方面,人们使用生成模型的频率越来越高,将会导致互联网上由生成模型创作的内容越来越多;另一方面,生成模型也在更新迭代,其所用的数据也是从互联网爬取的。可以想像,后续的训练集中由生成模型创作的部分占比将会越来越高。换句话说,后面的每一代模型迭代时可能都没有足够多的新鲜数据,纯粹是用自己生产的数据来训练,用广东话说就是“食自己”,这将导致模型的质量或者多样性越来越差,原论文称之为“模型自噬紊乱(Model Autophagy Disorder,MAD)”。

    无独有偶,生物学上也曾出现了类似的例子。牛是草食动物,然而,一些畜牧业者为了增强其营养供应,将其他牛的残骸(包括大脑)粉碎并混入饲料中。这在当时看起来是一个机智的做法,但未曾想到最后导致了“疯牛症”的出现和大规模传播。这一事例说明,长期的“食自己”可能会导致有害因素累积在生物体内,一旦达到一定程度,甚至可能触发灾难性的疾病。

    因此,我们同样需要反思生成模型的“肆虐”是否会在互联网上引发另一场“疯牛症”——这不仅可能导致信息的同质化,使得各种内容开始变得千篇一律,缺乏原创性和多样性,还有可能引发一系列无法预见的问题。

    降多样性

    可能有读者会产生疑问:生成模型不就是对真实数据分布的模拟吗?即便连续地使用生成模型的数据进行迭代训练,应该只是在重复呈现真实的数据分布,怎么会导致多样性的丧失呢?

    这其中的原因是多方面的。首先,训练生成模型的数据往往并非直接取自真实分布,而是经过人为的加工处理,比如去噪、规范化和对齐。经过加工后,训练集就已经丧失了部分多样性。例如,我们之所以能观察到很多新闻报道或知乎回答都有一股ChatGPT的味道,并非是因为内容本身,而是因为它们的格式与ChatGPT的相似性,这就说明ChatGPT的训练数据和输出结果的风格都比较明显且局限。再比如,为了降低图像生成模型的训练难度,我们通常需要对图像进行对齐处理,如在训练人脸生成模型时,常常需要将所有人脸的眼睛对齐到同一位置,这些操作也导致了多样性的丧失。

    此外,还有一个很关键的因素是,由于生成模型本身或者训练技巧等限制,每个生成模型都无法做到完美,此时我们通常会主动地引入一些牺牲多样性来提高生成质量的技巧。比如,对于GAN、Flow等生成模型,我们会选择降低采样噪声的方差,以获得质量更高的生成结果,这就是所谓的截断技巧或退火技巧。另外,如《生成扩散模型漫谈(九):条件控制生成结果》所述,在扩散模型中我们通常引入条件信息以控制输出结果,不管是Classifier-Guidance还是Classifier-Free方案,额外条件的引入也会限制生成结果的多样性。总而言之,在生成模型不尽完美时,我们在平衡质量与多样性过程中,就主动地放弃了部分多样性。

    正态分布:简单却深刻的例子

    为了更深刻地认识到这种现象,我们接下来将探讨一些具体的例子。作为开始,我们首先考虑的是正态分布,因为它足够简单,所以求解和分析都更加清晰。但后面我们可以观察到,结果已经足够有代表性了。

    假设真实分布是多元正态分布 N(μ0, Σ0),我们用来建模的分布也是正态分布 N(μ, Σ),那么训练模型的过程,就是从训练集里边估计均值向量 μ 和协方差矩阵 Σ。接下来我们假设每一代生成模型训练时,都只用到上一代生成模型创作的数据,这是比较极端的假设,但不可否认当生成模型进一步普及时,这个假设越来越接近成立。

    在这些假设下,我们从 t-1 代生成模型 N(μt-1, Σt-1) 中采样 n 个样本 x(1)t-1, x(2)t-1,⋯, x(n)t-1,来训练第 t 代的生成模型:

    μt = 1/n ∑_{i=1}^n x(i)t-1
    Σt = 1/(n-1) ∑_{i=1}^n (x(i)t-1 - μt)(x(i)t-1 - μt)^⊤

    注意,如果加上截断技巧,那么第 t 代的生成模型就是 N(μt, λΣt),其中 λ∈(0,1)。于是可以想象,每一代的方差(多样性)都将以 λ 的比率衰减下去,最后变成零(完全丧失多样性)。如果不使用截断技巧(即 λ=1)是不是就没事了?并不是。根据定义 μt = 1/n ∑_{i=1}^n x(i)t-1,由于 x(i)t-1 都是随机采样得到的,所以 μt 也是一个随机变量,根据正态分布的叠加性,它实际上服从:

    μt ∼ N(μt-1, 1/n Σt-1) ⇒ μt ∼ N(μ0, t/n Σ0)

    可以预见,当 t 足够大时,μt 本身就会明显偏离 μ0,这对应的是质量的崩溃,而不单单是多样性的降低。

    总的来说,截断技巧的引入,会大大加速多样性的丧失速度,而即便没有截断技巧,在长期有限样本的迭代训练中,生成分布也有可能明显偏离原始的真实分布。注意,正态分布这个例子所做的假设已经比一般的生成模型要弱得多,至少它的拟合能力是保证足够的,但这依然不可避免多样性衰减或者质量崩溃,而对于真实世界的数据和能力有限的生成模型来说,理论上只会更加糟糕。

    生成模型的实验验证

    对于实际的生成模型,理论分析难以进行,所以只能通过实验来探索结果了。原论文做了非常丰富的实验,结果基本上跟正态分布的结论一致,即如果加入截断技巧的话,多样性将会迅速丧失,即使没有截断技巧,经过反复迭代后的模型依然会不可避免地出现一些偏离。

    小结

    本文探讨了当各种生成模型大规模“肆虐”互联网时可能出现的后果。在生成模型反复用自己生成的数据进行更新迭代时,可能会导致信息严重同质化、丧失多样性的问题,类似于曾经因“牛吃牛”而出现的“疯牛病”。原论文通过理论分析和实验验证,揭示了生成模型在长期迭代中可能出现的“模型自噬紊乱(Model Autophagy Disorder,MAD)”现象。

    尽管生成模型为我们带来了许多便利和创新,但我们也需要警惕其潜在的风险。未来,我们或许需要更智能的数据筛选机制和更丰富的数据源来避免这种“食自己”的现象,从而确保生成模型的多样性和质量。

    参考文献

    希望本文能为您带来一些启发,帮助您更好地理解生成模型的潜在风险。如果您有任何疑问或建议,欢迎留言交流!


    生成模型的未来,或许不只是技术的进步,更是我们对其使用方式的深思熟虑。让我们共同期待一个更加多样化和创新的数字世界!

  • 揭秘大型语言模型:它们是否真正理解语言?

    导语:大型语言模型(LLMs)在自然语言理解任务上取得了显著进展,但它们是否真正理解语言仍存在争议。现有研究主要关注浅层的语言理解,忽视了更细致的探索。然而,这些细致的探索对于理解LLMs的独特理解机制、与人类认知的一致性以及提升LLMs的整体语言理解能力至关重要。为了填补这一研究空白,我们进行了一项深入研究,重点关注LLMs在常见词汇的不常见含义上的语义理解能力。

    研究团队首先构建了一个名为LeSC(Lexical Semantic Comprehension)的全新数据集,该数据集专注于评估LLMs在理解常见词汇的不常见含义方面的能力。通过精细处理,我们收集了来自标准化测试中的多义词,并对其进行了精细化处理。

    为了评估LLMs的表现,我们设计了两个评估指标:绝对准确率(Accabs)和加权准确率(Accwtd)。这些指标旨在客观、公正地评估模型的语言理解能力。

    我们选择了多种不同规模和架构的LLMs进行实验,包括GPT-3.5、GPT-4、Vicuna-v1.5、Llama2、Qwen、Baichuan2和ChatGLM36B。通过与16岁人类的表现进行对比,我们发现即使是最先进的LLMs在这一基本的词汇意义理解任务上也存在显著差距。

    为了提高LLMs的性能,我们尝试了多种先进的提示技术和检索增强生成技术。然而,这些方法仍然存在局限性。

    通过注意力可视化技术等方法,我们深入分析了LLMs在处理这些任务时的响应,提供了一些案例研究,以更好地理解LLMs在这个任务中的挑战。

    这项研究揭示了LLMs在理解常见词汇的不常见含义方面的能力和局限性。我们的研究结果为未来的研究提供了有价值的见解,鼓励进一步探索,以开发更智能的LLMs。

    总结:大型语言模型(LLMs)在语言理解任务上取得了显著进展,但它们是否真正理解语言仍存在争议。本研究通过构建新的数据集和多种实验,揭示了LLMs在理解常见词汇的不常见含义方面的能力和局限性。这些发现为未来研究指明了方向,为开发更智能的LLMs提供了新的见解。


    大型语言模型是一种人工智能技术,它们通过大量的训练数据和复杂的算法来生成和理解语言。然而,关于大型语言模型是否真正理解语言的问题存在一些争议。

    大型语言模型的能力:

    • 大型语言模型在处理语言任务方面表现出色,如文本生成、机器翻译和问答系统等。它们可以生成流畅、连贯的文本,并且在某些情况下能够提供准确的答案和解释。这些模型的训练数据包含了大量的语言知识和语法规则,使得它们能够模拟人类的语言表达能力。

    大型语言模型的局限性:

    • 尽管大型语言模型在处理语言任务方面表现出色,但它们并不真正理解语言的含义。这些模型是基于统计学方法构建的,它们通过分析大量的语言数据来学习语言的模式和规律,但并没有真正的理解语言的含义和背后的语义关系。
    • 大型语言模型缺乏常识和背景知识。它们的训练数据主要来自互联网,其中包含了大量的噪音和错误信息。这使得模型在处理一些需要常识和背景知识的任务时表现不佳,容易产生错误或不准确的答案。
    • 大型语言模型缺乏推理和逻辑能力。尽管这些模型可以生成连贯的文本,但它们往往缺乏推理和逻辑能力,无法进行深入的思考和分析。这使得它们在处理复杂的语言任务时存在一定的局限性。

    总结起来,大型语言模型在处理语言任务方面表现出色,但它们并不真正理解语言的含义。它们缺乏常识和背景知识,以及推理和逻辑能力。因此,在使用大型语言模型时,我们需要谨慎对待其生成的结果,并结合人类的判断和理解进行综合考量。


    Learn more:

    1. 大型语言模型能真正理解人类语言吗?澎湃号·湃客澎湃新闻-The Paper
    2. 大型语言模型综述全新出炉:从T5到GPT-4最全盘点,国内20余位研究者联合撰写澎湃号·湃客澎湃新闻-The Paper
    3. 圣塔菲学者:AI大语言模型真的理解人类语言吗?澎湃号·湃客澎湃新闻-The Paper

  • 突破大语言模型的拒绝:DSN攻击方法及集成评估流程

    近年来,大型语言模型(Large Language Models, LLMs)在自然语言处理领域取得了巨大成功,并在多个领域得到广泛应用。然而,随之而来的安全性问题,特别是LLMs在面对精心设计的”越狱”(jailbreaking)攻击时表现出的脆弱性,引起了研究者和从业者的高度重视。

    最近,一篇题为”Don’t Say No: Jailbreaking LLM by Suppressing Refusal”的论文提出了一种新的越狱攻击方法DSN(Don’t Say No),旨在促使LLMs生成肯定的响应,并创新性地增加了抑制拒绝的目标。同时,论文还提出了一个集成评估流程,以更准确地评估攻击的有害性。本文将深入探讨DSN攻击方法的原理、实验结果及其潜在影响。

    越狱攻击:安全性的重要挑战

    LLMs在识别和避免有害查询方面表现出色,但仍容易受到精心设计的越狱攻击的影响。这些攻击通过精心构造的提示诱导LLMs生成有毒内容,从而使其偏离预期的安全对齐。

    现有的越狱攻击方法,如GCG(Generate Confirmed Guesses)攻击,尽管在某些情况下能够成功,但其攻击成功率有限。此外,评估攻击效果也存在挑战,因为很难直接准确地评估攻击的有害性。目前广泛使用的评估方法,如拒绝关键词匹配,存在大量误报和漏报的问题。

    DSN攻击:抑制拒绝,提高攻击成功率

    为了更好地研究越狱攻击,论文提出了DSN攻击方法。与传统攻击不同,DSN不仅旨在生成肯定的响应,还创新性地增加了抑制拒绝的目标。

    具体而言,DSN在损失函数中加入了一个增强项,用于指导LLM的响应远离预定义的拒绝关键词或字符串。为了稳定两个相反目标(生成肯定响应和抑制拒绝)的优化过程,论文采用了Unlikelihood损失来抑制拒绝响应。

    通过一系列实验,论文展示了DSN攻击方法在平均和最优结果上都显著优于基线方法GCG。此外,论文还通过调节DSN中的超参数α,研究了拒绝损失项对越狱结果的影响。

    集成评估流程:更准确地评估攻击效果

    为了克服现有评估方法的局限性,论文提出了一个包含三个模块的集成评估流程:自然语言推理(NLI)矛盾评估、两个第三方LLM评估器(GPT-4和HarmBench)。

    通过人工注释300个生成的响应,论文展示了集成评估流程在准确性和可靠性方面优于传统的拒绝匹配方法。论文还比较了不同的聚合策略(如多数投票、单票批准和单票否决)在测试集上的性能。

    此外,论文还在新的评估流程下展示了DSN攻击在不同超参数设置下的最大攻击成功率,并分析了DSN攻击在不同受害者模型、评估指标和数据集分割下的转移性。

    贡献总结与未来展望

    这项研究的主要贡献在于提出了一种新的攻击方法DSN和一个集成评估流程,并通过广泛的实验验证了其有效性。这为提高LLMs的安全性提供了新的视角和方法。

    同时,论文也讨论了其方法的局限性,并提出了未来研究的方向,包括:

    1. 研究DSN攻击在不同类型LLMs和安全机制下的鲁棒性;
    2. 探索使用更复杂的拒绝关键词和模式;
    3. 进一步分析攻击的转移性和实时攻击的可行性;
    4. 基于DSN攻击的发现,开发更有效的防御机制;
    5. 探索更精细的评估方法,如考虑评估元素之间的权重差异;
    6. 研究越狱攻击的社会影响以及相关的法律和伦理问题。

    总之,这项研究为理解和提高LLMs的安全性提供了宝贵的见解,推动了AI系统的安全发展。随着研究的深入,我们有望开发出更加安全、可靠的大型语言模型,造福社会。

  • 让AI更聪明:如何挑选合适的“老师”来训练AI?

    Instruction Matters, a Simple yet Effective Task Selection Approach in Instruction Tuning for Specific Tasks

    https://papers.cool/arxiv/2404.16418

    Authors: Changho Lee ; Janghoon Han ; Seonghyeon Ye ; Stanley Jungkyu Choi ; Honglak Lee ; Kyunghoon Bae

    Summary: Instruction tuning has shown its ability to not only enhance zero-shot generalization across various tasks but also its effectiveness in improving the performance of specific tasks. A crucial aspect in instruction tuning for a particular task is a strategic selection of related tasks that offer meaningful supervision, thereby enhancing efficiency and preventing performance degradation from irrelevant tasks. Our research reveals that leveraging instruction information \textit{alone} enables the identification of pertinent tasks for instruction tuning. This approach is notably simpler compared to traditional methods that necessitate complex measurements of pairwise transferability between tasks or the creation of data samples for the target task. Furthermore, by additionally learning the unique instructional template style of the meta-dataset, we observe an improvement in task selection accuracy, which contributes to enhanced overall performance. Experimental results demonstrate that training on a small set of tasks, chosen solely based on the instructions, leads to substantial performance improvements on benchmarks like P3, Big-Bench, NIV2, and Big-Bench Hard. Significantly, these improvements exceed those achieved by prior task selection methods, highlighting the efficacy of our approach.

    想象一下,你想学习一门新语言,你会怎么做?你可能会找一位老师,或者参加一些课程,对吧?其实,训练人工智能(AI)也类似,我们需要给AI提供合适的“学习资料”和“老师”,才能让它变得更聪明。

    今天,我们要聊的就是AI训练中一个重要的环节——任务选择。就像我们需要选择合适的老师和课程一样,训练AI时也需要挑选合适的任务来让它学习。

    为什么要挑选任务?

    目前,训练AI的一种流行方法叫做指令调整。简单来说,就是让AI学习各种各样的任务,从而提高它在未见过任务上的表现。但这带来一个问题:如何选择合适的任务来训练AI呢?

    如果我们随便挑选一些任务,可能会导致AI学到一些无关的知识,甚至影响它的性能。这就好像你学习英语,却不小心混入了法语和西班牙语的课程,结果可能会让你更加困惑。

    如何挑选合适的任务?

    为了解决这个问题,研究人员提出了一种新的方法,叫做基于指令的任务选择(INSTA)。这个方法的核心思想是:通过分析任务的指令,来判断任务之间的相关性

    举个例子,假设我们想训练AI完成“写一首关于猫的诗”这个任务。INSTA会分析这个任务的指令,然后在大量的任务库中寻找与之相关的任务,比如“写一首关于狗的诗”、“描述猫的外貌特征”等等。

    通过这种方式,INSTA可以帮助我们挑选出与目标任务相关的任务,从而让AI更高效地学习,避免学习到无关的知识。

    INSTA的效果如何?

    研究人员通过实验验证了INSTA的有效性。他们发现,使用INSTA挑选的任务训练出来的AI,在各种任务上的表现都比随机挑选任务训练出来的AI更好。

    未来展望

    INSTA为AI训练提供了一种新的思路,但也有一些可以进一步探索的方向:

    • 探索不同模型的效果:INSTA目前主要在一种特定的AI模型上进行测试,未来可以探索它在其他模型上的效果。
    • 开发更精确的度量方法:INSTA使用简单的相似度来判断任务之间的相关性,未来可以开发更精确的度量方法。
    • 研究指令质量的影响:指令的质量会影响任务选择的准确性,未来可以研究如何提高指令的质量。

    总而言之,INSTA为我们提供了一种有效的方法来挑选合适的任务来训练AI,让AI变得更聪明,更能理解我们的指令。随着研究的不断深入,相信AI会在未来发挥更大的作用,为我们的生活带来更多便利。

  • 非英语语言文档级关系抽取:挑战与探索

    Building a Japanese Document-Level Relation Extraction Dataset Assisted by Cross-Lingual Transfer

    https://papers.cool/arxiv/2404.16506

    Authors: Youmi Ma ; An Wang ; Naoaki Okazaki

    Summary: Document-level Relation Extraction (DocRE) is the task of extracting all semantic relationships from a document. While studies have been conducted on English DocRE, limited attention has been given to DocRE in non-English languages. This work delves into effectively utilizing existing English resources to promote DocRE studies in non-English languages, with Japanese as the representative case. As an initial attempt, we construct a dataset by transferring an English dataset to Japanese. However, models trained on such a dataset suffer from low recalls. We investigate the error cases and attribute the failure to different surface structures and semantics of documents translated from English and those written by native speakers. We thus switch to explore if the transferred dataset can assist human annotation on Japanese documents. In our proposal, annotators edit relation predictions from a model trained on the transferred dataset. Quantitative analysis shows that relation recommendations suggested by the model help reduce approximately 50% of the human edit steps compared with the previous approach. Experiments quantify the performance of existing DocRE models on our collected dataset, portraying the challenges of Japanese and cross-lingual DocRE.

    这篇论文探讨了在非英语语言中,特别是日语中,如何有效地进行文档级关系抽取(DocRE)。DocRE旨在从文档中提取所有语义关系,但目前的研究主要集中在英语上,对非英语语言的关注有限。

    挑战

    • 数据匮乏:非英语语言的DocRE数据集很少,这限制了模型的训练和评估。
    • 跨语言差异:直接将英语资源翻译成其他语言会导致语义和结构上的差异,影响模型性能。
    • 文档复杂性:非英语语言文档的复杂性可能高于英语文档,对模型理解和推理能力提出了更高要求。

    解决方案

    • 跨语言转移:利用机器翻译将英语DocRE数据集转换为日语数据集,作为初始尝试。
    • 半自动数据集构建:由于翻译数据集的局限性,采用人工编辑机器推荐的关系的方式构建高质量的日语DocRE数据集(JacRED)。
    • 模型评估:评估现有DocRE模型在JacRED数据集上的性能,并分析其跨语言转移能力。

    研究发现

    • 翻译数据集的局限性:直接使用翻译数据集训练的模型在处理原始日语文本时召回率较低,表明翻译过程中存在语义和结构上的差异。
    • 半自动数据集构建的有效性:人工编辑机器推荐的关系可以有效减少人工标注的工作量,提高数据集构建效率。
    • 模型性能:现有DocRE模型在JacRED数据集上的性能仍然有待提高,跨语言转移能力也存在局限性。

    未来方向

    • 改进跨语言转移方法:探索更先进的跨语言转移技术,更好地捕捉不同语言之间的语义和结构对应关系。
    • 优化上下文学习:研究如何更好地利用大型语言模型进行上下文学习,提高其在DocRE任务中的性能。
    • 多模态DocRE:考虑将视觉信息等多模态数据融合到DocRE任务中,提高模型对文档内容的理解。
    • 领域适应性:研究如何使DocRE模型更好地适应特定领域,例如法律、医疗或科学文献。
    • 增量式学习和持续学习:探索模型在增量式数据上的训练方法,以及如何设计能够持续学习的系统。
    • 解释性和可视化:提高DocRE模型的解释性,开发可视化工具帮助用户理解模型的预测和决策过程。
    • 鲁棒性和错误分析:深入分析DocRE模型在特定类型错误上的表现,并探索减少这些错误的策略。
    • 多语言DocRE资源开发:为更多语言构建DocRE数据集和模型,促进多语言DocRE研究。
    • 知识图谱的自动构建和更新:研究如何利用DocRE技术自动构建和更新知识图谱。
    • DocRE在实际应用中的集成:探索如何将DocRE技术集成到实际应用中,如智能搜索引擎、推荐系统和自动文摘等。

    总结

    这篇论文为非英语语言,特别是日语的DocRE研究提供了新的思路和方法。通过构建高质量的日语DocRE数据集并评估现有模型的性能,论文揭示了当前DocRE技术在非英语语言上的挑战和局限性,并为未来的研究指明了方向。随着研究的不断深入,DocRE技术有望在更多语言和领域得到应用,为自然语言处理领域带来新的突破。

  • 语言的桥梁:AI 如何帮助不同语言之间无障碍交流

    你有没有想过,有一天,语言不再是人与人之间交流的障碍?人工智能(AI)正在努力实现这个目标!今天,我们就来聊聊一项叫做“跨语言迁移”的技术,它可以让 AI 在不同语言之间自由穿梭,就像搭建了一座语言的桥梁。

    跨语言迁移:打破语言壁垒

    想象一下,你正在用中文阅读一篇有趣的文章,但你的朋友只会英文。这时,AI 就能派上用场了!它可以将这篇文章翻译成英文,让你的朋友也能理解文章的内容。这就是跨语言迁移的魔力。

    词汇和语法:语言的基石

    要实现跨语言迁移,AI 需要掌握两种语言的词汇和语法知识。词汇就像一块块砖头,语法则是搭建房子的规则。只有同时掌握这两者,AI 才能真正理解语言的含义,并进行准确的翻译。

    LS-mBERT:语言的翻译官

    在这项研究中,科学家们开发了一个名为“LS-mBERT”的 AI 模型。它就像一位专业的翻译官,能够在不同语言之间进行转换。LS-mBERT 的特别之处在于,它同时利用了词汇和语法知识,让翻译结果更加准确。

    LS-mBERT 的工作原理

    LS-mBERT 的工作原理可以分为以下几个步骤:

    1. 代码切换: 就像学习外语时,我们会用目标语言替换一些单词,LS-mBERT 也会用这种方法来学习词汇之间的对应关系。
    2. 图注意力网络(GAT): GAT 就像一位语法专家,它能够分析句子的结构,并理解每个词语在句子中的作用。
    3. 整合知识: LS-mBERT 将词汇和语法知识结合起来,就像搭建一座桥梁,让 AI 能够在不同语言之间自由穿梭。

    实验结果:令人惊喜的进步

    科学家们用 LS-mBERT 进行了一系列实验,结果显示它在文本分类、命名实体识别和语义解析等任务上都表现出色,甚至超过了现有的其他 AI 模型。

    未来展望:AI 翻译的无限可能

    LS-mBERT 的成功只是 AI 翻译领域的一个开始。未来,AI 翻译将会更加准确、流畅,甚至可以理解不同语言中的文化差异,真正实现无障碍的跨语言交流。

    结语

    AI 正在改变我们的世界,它帮助我们打破语言的壁垒,让不同文化背景的人们能够更好地相互理解。相信在不久的将来,AI 翻译将会成为我们生活中不可或缺的一部分,让我们拭目以待!

  • 解密Tele-FLM:高效的多语言大型语言模型

    近年来,大型语言模型(LLM)在语言理解和生成方面展现出了惊人的能力,应用范围也越来越广泛。然而,如何高效地将LLM扩展到超过500亿个参数,同时最小化试错成本和计算资源消耗,一直是业界难题。今天,我们将介绍Tele-FLM(也称为FLM2),一个520亿参数的开源多语言大型语言模型,它为高效扩展LLM提供了一种新的思路。

    Tele-FLM:解决LLM扩展难题

    Tele-FLM旨在解决以下几个关键问题:

    • 高效扩展LLM: 目前缺乏详细且开源的方法来高效地扩展LLM至500亿参数以上,Tele-FLM提供了一种新的可行方案。
    • 降低计算成本: 大型语言模型的开发往往需要巨大的计算资源,Tele-FLM通过优化训练流程,有效降低了计算成本。
    • 提升多语言能力: Tele-FLM展示了出色的多语言语言建模能力,能够处理多种语言的文本数据。
    • 增强事实判断能力: Tele-FLM在预训练阶段增强了事实判断能力,使其在处理需要事实验证的任务时更加可靠。
    • 开源共享: 除了模型权重,Tele-FLM的开发者还分享了核心设计、工程实践和训练细节,为学术界和工业界提供了宝贵的参考。

    Tele-FLM的技术亮点

    Tele-FLM的成功得益于以下几个关键技术:

    • 模型生产管道: 为了减少超参数搜索过程中的试错和重启训练的次数,Tele-FLM建立了一个高效的模型生产管道,有效降低了计算资源消耗。
    • 数据集构建: Tele-FLM使用了2万亿token的多语言数据集进行训练,涵盖了多种语言和领域,保证了模型的泛化能力。
    • 模型架构优化: Tele-FLM继承并扩展了FLM-101B的架构,并进行了一系列优化,提高了模型的性能和效率。
    • Tokenizer训练: Tele-FLM训练了一个与预训练数据分布紧密对齐的tokenizer,有效提高了模型的压缩性能。
    • 硬件和并行训练: Tele-FLM利用了3D并行训练方法,在112个A800 SXM4 GPU服务器上进行训练,保证了训练效率。

    Tele-FLM的性能表现

    Tele-FLM在多个基准测试中展现了出色的性能,包括:

    • 多语言语言建模: Tele-FLM在文本语料库上的BPB(Bits Per Byte)指标表现优异,证明了其强大的多语言处理能力。
    • 英语和中文基准测试: Tele-FLM在Open LLM Leaderboard、HumanEval、BIG-Bench Hard和OpenCompass等基准测试中取得了与Llama2-70B和DeepSeek-67B等更大规模模型相当的成绩。

    Tele-FLM的未来展望

    Tele-FLM的开发者计划继续改进模型,探索更大规模的模型训练,并开发更高效的训练技术。他们也致力于将Tele-FLM应用于更广泛的领域,例如聊天机器人、虚拟助手和教育工具等。

    总结

    Tele-FLM为高效扩展LLM提供了一种新的思路,其开源共享的特性也为学术界和工业界提供了宝贵的参考。相信随着技术的不断发展,Tele-FLM将在更多领域发挥重要作用,推动人工智能的进步。

  • GOVSIM: 探索大型语言模型在合作决策中的潜力

    随着大型语言模型(Large Language Models, LLMs)在人工智能领域的快速发展,它们在复杂系统中扮演着越来越重要的角色。然而,在合作环境中确保LLMs的安全决策仍然是一个巨大的挑战。一篇名为”Governance of the Commons Simulation: Evaluating Large Language Models in Cooperative Decision-Making”的论文引入了一个名为”Governance of the Commons Simulation (GOVSIM)”的模拟平台,旨在研究LLMs在多智能体资源分享场景中的策略互动和合作决策能力。

    GOVSIM: 多智能体资源管理模拟平台

    GOVSIM是一个专门设计的模拟环境,用于评估基于LLM的智能体在管理共享资源方面的能力。在这个环境中,智能体需要在一个有限再生能力的共享资源池中进行策略推理、伦理决策和谈判。过度使用或提取超出可持续限制的资源会导致资源退化或完全枯竭。

    模拟过程包括多个阶段,如策略制定、资源收集和集体讨论,智能体在这些阶段中互动并做出决策。研究者定义了多个评估指标,如生存月份数、总收益、平等性、效率和过度使用率,以衡量智能体的合作行为和社会结果。

    智能体框架和实验设置

    为了将不同的LLMs集成到GOVSIM中,研究者使用生成式代理框架(Generative Agent framework)创建了一个标准代理。他们测试了15种不同的LLMs,包括开放权重和封闭权重模型,并分析了它们在模拟中的表现。

    除了默认设置的实验,研究者还进行了扰动测试,通过引入具有更激进动态的新智能体来评估社区的适应性和合作行为。他们还引入了”普遍化假设”来提高LLM智能体对长期社区结果的认识,从而改善可持续性结果。

    关键研究结果和未来方向

    研究发现,在测试的15种LLMs中,只有两种模型能够实现可持续的结果,这凸显了模型在管理共享资源方面的能力差距。此外,通过移除智能体的沟通能力,研究者发现它们倾向于过度使用共享资源,强调了沟通在促进合作中的重要性。有趣的是,大多数LLMs缺乏进行普遍化假设的能力,这突出了它们在推理技能方面的一个显著弱点。

    论文提出了多个未来研究方向,包括扩展模拟的复杂性、提高LLMs的谈判能力、引入对抗性智能体等。这些方向旨在深入理解LLMs在复杂社会互动中的潜力和局限性,并为开发更安全、更有效的AI系统提供见解。

    开源工具包和伦理考虑

    为了促进未来的研究,论文开源了全套研究结果,包括模拟环境、代理提示和Web界面。这为研究者提供了一个宝贵的资源,用于探索LLMs在合作决策中的潜力和局限性。

    同时,论文也强调了在模拟研究中考虑伦理问题的重要性。研究者应确保模拟结果辅助而非替代人类决策,并在开发和部署AI系统时考虑潜在的伦理影响。

    小结

    GOVSIM为研究LLMs在多智能体资源分享场景中的策略互动和合作决策能力提供了一个创新的模拟平台。通过一系列实验和分析,这项研究揭示了LLMs在管理共享资源方面的潜力和局限性,并为未来的研究和AI系统开发提供了宝贵的见解。随着研究的深入,GOVSIM有望成为探索AI在复杂社会互动中的角色的重要工具,推动更安全、更有效的AI技术的发展。

  • LayerSkip: 大型语言模型的高效推理解决方案

    近年来,大型语言模型(Large Language Models, LLMs)在自然语言处理领域取得了显著成功。然而,这些模型在部署时面临着高计算和内存需求的挑战,导致了高昂的财务成本和能源消耗。为了解决这一问题,研究人员提出了各种加速技术,但它们往往会显著降低模型的准确性,并且可能需要专门的硬件或软件支持。

    最近,一篇名为”LayerSkip: An End-to-end Solution for Accelerating Inference of Large Language Models”的论文提出了一种新颖的端到端解决方案,旨在加速LLMs的推理过程,同时保持甚至提高模型的准确性。本文将深入探讨LayerSkip方法的原理、实验结果及其潜在影响。

    LayerSkip方法概述

    LayerSkip方法包括三个主要阶段:训练时的层dropout和早期退出损失、推理时的早期退出、以及自我推测解码。

    在训练阶段,LayerSkip对模型应用层dropout,即随机跳过一些层,并使用不同的dropout率,对较早的层使用较低的dropout率,而对较后的层使用较高的dropout率。此外,还引入了早期退出损失,使得所有transformer层共享同一个退出点,并通过训练使模型的语言模型头能够理解来自不同层的嵌入表示。

    在推理阶段,LayerSkip采用早期退出策略,即仅运行模型的前几层,然后直接跳转到语言模型头,从而减少每次生成令牌所需的层数。这样可以显著减少计算量,提高推理速度。

    为了进一步提高推理的准确性,LayerSkip提出了一种自我推测解码算法。该算法首先使用模型的前几层生成一系列草稿令牌,然后使用剩余的层来验证这些草稿令牌,并在必要时进行纠正。通过共享的计算和激活,这种方法可以减少内存占用并提高效率。

    实验结果

    论文在不同大小的Llama模型上进行了广泛的实验,涵盖了预训练、持续预训练、特定数据领域微调和特定任务微调等不同类型的训练。实验任务包括摘要生成、编程和语义解析等。

    结果表明,LayerSkip方法在这些任务上都取得了显著的速度提升,最高可达2.16倍,同时保持了与原始模型相当甚至更好的准确性。这证明了LayerSkip作为一种通用的LLMs加速解决方案的有效性。

    未来展望

    尽管LayerSkip已经展现了巨大的潜力,但仍有一些方面值得进一步探索。例如,可以研究如何进一步提高早期退出层的准确性,探索动态退出层选择策略,以及将LayerSkip与其他参数高效技术结合以进一步提高效率。

    此外,还需要在更多类型的任务和模型上验证LayerSkip的通用性,并研究如何减少对超参数调整的需求,使该方法更易于应用。从环境影响的角度来看,评估LayerSkip在减少LLMs能源消耗方面的潜力也是一个有意义的方向。

    小结

    LayerSkip为加速大型语言模型的推理提供了一种新颖而有效的解决方案。通过在训练时引入层dropout和早期退出损失,在推理时采用早期退出和自我推测解码,LayerSkip在保持准确性的同时显著提高了推理速度。这项研究为推动LLMs在资源受限设备上的应用迈出了重要一步,有望促进自然语言处理技术的普及和民主化。随着进一步的优化和扩展,LayerSkip有望在更广泛的场景中发挥其潜力,为人工智能的发展做出贡献。

  • 用注意力机制提升文本匹配:FA 和 SFA 模块详解

    在信息爆炸的时代,文本匹配技术在各种应用中发挥着重要作用,例如搜索引擎、问答系统和推荐系统等。轻量级文本匹配模型因其参数量小、推理速度快等优点而受到关注。然而,如何在轻量级模型中有效地捕获文本的语义信息一直是一个挑战。

    这篇博客文章将介绍两种新的注意力机制模块:特征注意力 (FA) 和选择性特征注意力 (SFA),它们可以帮助轻量级模型更好地理解文本的语义信息,从而提高文本匹配的准确率。

    1. 问题定义

    轻量级文本匹配模型通常使用孪生网络结构,该结构将两个文本编码成向量,然后比较这两个向量之间的相似度。然而,这种方法忽略了文本中嵌入特征之间的复杂关系。

    FA 和 SFA 模块旨在解决这一问题,它们可以帮助模型更好地捕获嵌入特征之间的依赖关系,从而提高文本匹配的准确率。

    2. FA 模块

    FA 模块采用了一种叫做“挤压-激励”的技术,它可以动态调整对个体特征的强调,使网络更关注对分类有重要贡献的特征。

    具体来说,FA 模块首先使用平均池化将特征图压缩成一个特征描述符,然后通过全连接层生成一个激活向量,该向量指示了对最终分类有显著贡献的特征。最后,通过元素级乘法将激活向量与原始特征相乘,以生成一个更加精细调整的嵌入特征表示。

    3. SFA 模块

    SFA 模块在 FA 的基础上,引入了选择性特征注意力机制。该机制使用堆叠的 BiGRU Inception 结构,以实现多尺度语义提取,并通过“选择”机制动态集中注意力。

    具体来说,SFA 模块首先通过一个瓶颈结构降低特征维度,然后通过 N 层堆叠的 BiGRU 捕获每一层的语义表示,实现了特征的“分裂与融合”。

    在“挤压-激励”阶段,SFA 模块使用全局平均池化和全局最大池化来压缩信息,并使用全连接层来激活特征。

    “选择”阶段通过向量级 softmax 归一化来适应性地加权不同分支的特征,生成每个分支的加权和表示,从而实现对不同抽象层次上语义信息和嵌入特征的动态聚焦。

    4. 实验评估

    在多个文本匹配基准数据集上进行的实验表明,FA 和 SFA 模块可以有效地提高文本匹配的准确率。此外,SFA 模块的“选择”机制还可以有效管理不同尺度语义提取的梯度流动,从而提高训练稳定性和模型性能。

    5. 未来工作

    未来的研究方向包括将 FA 和 SFA 模块应用于其他 NLP 任务,优化计算效率,提高模型的可解释性,以及测试和改进它们在不同语言和不同领域数据集上的泛化能力。

    6. 总结

    FA 和 SFA 模块为轻量级文本匹配任务提供了一种新的嵌入特征依赖性建模方法,并实验评估表明,它们能够有效地提高文本匹配性能。未来,我们将继续探索 FA 和 SFA 模块在其他 NLP 任务中的应用,并进一步提高它们的性能和可解释性。

  • PRETTY: 一种无需训练的跨语言大型语言模型对齐方法

    大型语言模型(Large Language Models, LLMs)在自然语言处理领域取得了巨大成功。然而,如何使LLM的输出与特定偏好相一致仍然是一个挑战。监督式微调(Supervised Fine-Tuning, SFT)是一种直接的方法,但其对齐的深度受到质疑。在跨语言生成任务中,非英语数据的稀缺性和获取成本进一步限制了SFT的应用。

    最近,一篇名为”PRETTY: Prefix Text as a Yarn for Training-free Alignment of Foundation Language Models”的论文提出了一种创新的训练自由对齐方法,旨在解决这些问题。本文将深入探讨PRETTY方法的原理、实验验证及其潜在影响。

    SFT的局限性

    SFT通过在特定任务上微调预训练的LLM,使其输出与期望的偏好相一致。然而,一些研究质疑SFT实现的对齐可能只是表面的,没有真正深入到模型的知识体系中。

    此外,论文指出SFT在跨语言生成任务中的有效性可能受到其对先前token的依赖的限制。这种依赖性可能阻碍了SFT在目标语言中激发特定任务生成的能力。

    PRETTY方法

    针对上述问题,论文提出了PRETTY(Prefix Text as a Yarn)方法。其核心思想是使用最少的任务相关先验token来桥接基础LLM和SFT LLM,从而在无需训练的情况下实现与SFT相当的性能。

    PRETTY方法的关键在于构建高质量的先验token。论文提出了三种策略:

    1. SFT Prior:使用SFT模型生成的前几个token作为先验token。
    2. Refined Prior:使用较小的下游任务训练模型的输出token作为先验token。
    3. Pseudo Prior:对于极低资源语言对,使用双语词典创建伪标签作为先验token。

    通过在输入中添加这些先验token,PRETTY方法能够引导基础LLM进行跨语言生成,实现对齐而无需额外的训练。

    实验验证

    论文在机器翻译、跨语言摘要和非英语词性标注(POS)任务上对PRETTY方法进行了全面的实验验证。实验涵盖了八种不同语言,展示了该方法在不同资源可用性水平下的有效性。

    结果表明,通过仅添加一两个先验token,基础LLM就能达到与SFT模型相当的性能。这证明了PRETTY方法作为一种成本效益高的SFT替代方案的潜力。

    意义与展望

    PRETTY方法为推进多语言LLM的民主化提供了新的视角。它降低了对大量标注数据和计算资源的依赖,使得在资源有限的情况下也能实现高质量的跨语言对齐。

    未来的研究方向包括将PRETTY扩展到更多的对齐场景,如通过人类反馈进行强化学习,以及进一步优化先验token的生成策略。此外,还需要探索如何减轻SFT过程中可能出现的灾难性遗忘问题。

    小结

    PRETTY方法通过引入最少的任务相关先验token,提供了一种简单而有效的LLM跨语言对齐方案。它突破了SFT的局限性,降低了对训练资源的依赖,为发展更加普惠的多语言LLM铺平了道路。随着研究的深入,PRETTY有望在更广泛的任务和语言中得到应用,推动自然语言处理技术造福全球用户。

  • SiLU 激活函数:深度学习中的新星

    SiLU 激活函数,全称 Swish,近年来在深度学习领域崭露头角,并展现出诸多优势。本文将详细介绍 SiLU 激活函数,包括其定义、性质、优缺点以及应用场景,帮助读者更好地理解和运用这一新兴技术。

    1. 什么是 SiLU 激活函数?

    SiLU 激活函数由 Google 研究员提出,其定义如下:

    SiLU(x) = x * sigmoid(x)

    其中,sigmoid 函数是常见的激活函数,其表达式为:

    sigmoid(x) = 1 / (1 + exp(-x))

    SiLU 激活函数可以看作是 sigmoid 函数和输入值的乘积。它将输入值乘以一个介于 0 和 1 之间的值,从而实现非线性激活。

    2. SiLU 激活函数的性质

    SiLU 激活函数具有以下几个重要性质:

    • 平滑性: SiLU 激活函数是平滑的,这意味着它的导数在所有点都存在。这使得 SiLU 激活函数更易于优化,并有助于避免梯度消失问题。
    • 非单调性: SiLU 激活函数是非单调的,这意味着它在某些区间内是单调递增的,而在其他区间内是单调递减的。这使得 SiLU 激活函数可以更好地学习复杂的数据模式。
    • 零中心性: SiLU 激活函数在零点处取值为零。这使得 SiLU 激活函数可以更好地处理输入数据的分布,并避免梯度爆炸问题。

    3. SiLU 激活函数的优缺点

    与其他激活函数相比,SiLU 激活函数具有以下优点:

    • 更高的精度: 在许多任务中,SiLU 激活函数可以比其他激活函数获得更高的精度。
    • 更快的收敛速度: SiLU 激活函数可以帮助模型更快地收敛。
    • 更强的鲁棒性: SiLU 激活函数对噪声和数据分布变化更具鲁棒性。

    然而,SiLU 激活函数也存在一些缺点:

    • 计算成本更高: SiLU 激活函数需要进行乘法和 sigmoid 运算,这比其他一些激活函数的计算成本更高。
    • 缺乏理论解释: SiLU 激活函数的优越性还没有得到充分的理论解释。

    4. SiLU 激活函数的应用场景

    SiLU 激活函数可以应用于各种深度学习任务,包括:

    • 图像识别: SiLU 激活函数可以提高图像识别模型的精度。
    • 自然语言处理: SiLU 激活函数可以提高自然语言处理模型的性能。
    • 目标检测: SiLU 激活函数可以提高目标检测模型的精度。

    5. 总结

    SiLU 激活函数是一种新兴的激活函数,它具有平滑性、非单调性、零中心性等优点,并且在许多任务中表现出更高的精度和更快的收敛速度。虽然 SiLU 激活函数还存在一些缺点,但它仍然是深度学习领域值得关注的新技术。

    参考资料

  • 通过上下文多样化提高生成式常识推理的多样性

    大家好,今天我想和大家分享一篇有趣的论文,题为《通过上下文多样化提高生成式常识推理的多样性》。这篇论文主要研究如何提高大型语言模型(LLMs)在生成常识推理(GCR)任务中的输出多样性,同时保持生成质量。

    在GCR任务中,模型需要利用常识知识对给定情境进行推理,并生成连贯的句子。虽然生成句子的质量至关重要,但多样性同样重要,因为它反映了模型使用各种常识知识事实的能力。

    论文提出了一种名为In-Context Diversification(ICD)的方法来解决这个问题。ICD方法的核心思想是在保持生成质量的同时,通过上下文学习(ICL)来提高句子的多样性。具体来说,ICD方法分两步进行:首先,让LLM自由生成高质量句子;其次,使用用户指定的多样性度量来评估并提高句子的多样性。

    为了验证ICD方法的有效性,论文在CommonGen、ComVE和DimonGen三个GCR数据集上进行了实验。使用BLEU、SPICE、BERTScore等质量指标和self-BLEU、Distinctk、Entropyk等多样性指标来评估生成结果。实验结果表明,ICD方法在质量和多样性之间取得了理想的平衡,并且在Combined metrics上优于默认和多样化提示生成的句子。

    此外,论文还探索了将ICD生成的句子作为训练数据,用于提高现有常识生成器的多样性。通过MoE模型的验证,证明了这一点的可行性。同时,论文还研究了LLM是否能够准确判断给定句子集的多样性,以及不同温度设置对ICD方法性能的影响。

    尽管这项研究取得了积极的成果,但仍有一些局限性和未来的探索方向。例如,当前的研究主要集中在英语句子的生成上,未来可以将ICD方法扩展到多语言模型。此外,还需要在更广泛的LLMs上评估ICD方法,并考虑社会偏见和有害内容生成的问题。

    总的来说,这篇论文提出了一种有效的方法来提高LLMs在GCR任务中的输出多样性,并通过一系列实验验证了该方法的性能。这项研究不仅推动了GCR领域的发展,也为其他需要多样性输出的NLP任务提供了新的思路。希望这篇论文能够激发更多的研究,进一步提高LLMs在各种文本生成任务中的性能。

    如果大家对这篇论文感兴趣,欢迎留言讨论。也欢迎大家分享自己在GCR或其他NLP任务中遇到的问题和见解。让我们一起探索如何让AI生成更加多样化和高质量的文本吧!

  • FILM-7B: A Large Language Model that Makes Full Use of Context

    Large language models (LLMs) are becoming increasingly powerful, but they still struggle to fully utilize information within long contexts. This “lost-in-the-middle” challenge can hinder the development of LLMs, as they may fail to understand the full meaning of long texts.

    This blog article will discuss a new approach called FILM-7B (FILl-in-the-Middle) that addresses this challenge. FILM-7B is based on Mistral-7B and utilizes information-intensive (IN2) training, a data-driven solution that emphasizes the importance of every position in a long context.

    The Lost-in-the-Middle Challenge

    LLMs often struggle to understand the full meaning of long texts because they fail to recognize the importance of information in the middle of the context. This can lead to errors in tasks such as question answering and summarization.

    The “lost-in-the-middle” challenge is caused by a lack of explicit supervision during training. LLMs are not explicitly taught that every position in a long context can hold crucial information.

    FILM-7B: A Data-Driven Solution

    FILM-7B addresses the “lost-in-the-middle” challenge through IN2 training. This training method uses a synthesized long-context question-answer dataset, where the answer requires:

    • Fine-grained information awareness on a short segment (~128 tokens) within a synthesized long context (4K-32K tokens).
    • Integration and reasoning of information from two or more short segments.

    By applying IN2 training to Mistral-7B, FILM-7B is able to effectively utilize information from different positions in its 32K context window.

    Evaluation and Results

    FILM-7B was evaluated on three probing tasks that encompass various context styles and information retrieval patterns. The results demonstrate that FILM-7B can robustly retrieve information from different positions in its long context window.

    Furthermore, FILM-7B significantly improves the performance on real-world long-context tasks, while maintaining a comparable performance on short-context tasks. These results indicate that IN2 training can generalize to real-world scenarios and that FILM-7B does not compromise short-text capabilities during training.

    Conclusion

    FILM-7B is a promising LLM that addresses the “lost-in-the-middle” challenge through IN2 training. This data-driven approach allows FILM-7B to effectively utilize information from different positions in long contexts, leading to improved performance on both probing tasks and real-world long-context tasks.

    Further Research

    Several areas for further research are identified in the paper, including:

    • Exploring the diversity of training data.
    • Optimizing training strategies.
    • Investigating the impact of different model architectures.
    • Enhancing the model’s cross-lingual capabilities.
    • Exploring real-time performance and robustness.

    These research directions will help to further improve the capabilities of FILM-7B and other LLMs in handling long contexts.

    Additional Resources

    • GitHub Link: https://github.com/microsoft/FILM
    • Paper: https://arxiv.org/abs/2310.05389

  • 如何让大型语言模型(LLMs)充分利用长文本信息?——微软提出的FILM方法

    大家好,相信不少人已经体验过ChatGPT等大型语言模型(LLMs)强大的对话和写作能力。但你可能不知道,目前的LLMs在处理长文本(如长篇小说、学术论文等)时,还面临着一个棘手的问题,那就是”迷失在中间”(Lost-in-the-Middle)。

    什么是”迷失在中间”?简单来说,就是模型在阅读一篇很长的文章时,往往能很好地理解文章开头和结尾的内容,但对中间段落的重要信息却视而不见。这就像我们看一部电影,只记住了精彩的开场和结局,但对中间情节毫无印象。

    微软的研究人员推测,造成这个问题的原因,可能是目前用于训练LLMs的长文本数据存在偏差——它们没有明确告诉模型:文章的每个部分都可能包含关键信息,要认真对待!这就导致模型养成了”重两头、轻中间”的坏习惯。

    为了纠正这个偏差,研究人员提出了一种名为”信息密集型训练”(Information-Intensive Training,简称IN2)的新方法。它的核心思想是:人工合成一批长文本问答数据,其中的问题都需要模型在长文本的不同部分准确定位信息,并将它们联系起来进行推理。通过在这样的数据集上反复训练,模型就能学会关注长文本的每个细节。

    研究人员以Mistral-7B模型为基础,应用IN2训练方法,得到了一个名为FILM-7B的新模型。为了全面测试它的长文本理解能力,他们还精心设计了多个探测任务,覆盖不同的文本类型(如文档、代码、表格数据等)和信息检索模式(如串联、跳跃、双向等)。

    在这些探测任务上,FILM-7B展现了出色的表现,证明它能够灵活地在长达32,000词的超长文本中准确定位关键信息。更令人兴奋的是,在现实世界的长文本应用中,如长篇问答(NarrativeQA)任务,FILM-7B的F1分数也从23.5大幅提高到26.9,而在需要推理的常识问答(CSQA)等短文本任务上,性能并未下降反而小幅提升(59.3%->59.2%),可见IN2方法的有效性。

    此外,研究人员还将FILM-7B与其他知名的开源长文本模型(如ChatGLM、LongChat等)和商业模型(如GPT-3.5/4)进行了比较,结果显示FILM-7B在大多数长文本任务上都实现了最佳表现,充分证明了IN2训练的潜力。

    当然,FILM-7B还有进一步改进的空间。例如,研究人员分析发现,在训练过程中合理使用”滑动窗口”和”位置编码”等技巧,有望进一步提高模型性能。未来,他们还计划在更大规模、更多样化的真实数据上应用IN2方法,以进一步提升FILM系列模型的长文本理解能力。

    总之,这项研究为LLMs在长文本处理上的瓶颈问题提供了一种简单有效的解决思路,相信通过更多研究者的努力,LLMs必将在各类长文本应用场景中发挥更大的价值。感兴趣的读者可以访问论文 [项目网站](https://github.com/microsoft/FILM) 了解技术细节并动手实践。

    以上就是我对这篇论文的通俗解读,不知你觉得如何?欢迎在评论区交流你的想法!

  • AI助你笔下生辉光 – 助力创意写作的Weaver模型

    亲爱的创作者们,你是否也经常因为创作瓶颈而烦恼?想让文章更流畅优雅,让故事情节更丰富生动,让文案更具感染力,让创意像泉水一样涌流不止,但总是力不从心?别担心,人工智能正随着你的需要不断进步!🤖💡

    今天我要给大家介绍一项最新研究成果 – 名为Weaver的大型语言模型家族。这可能就是写作界期待已久的“石破天惊”之作!Weaver专门针对创意写作进行了优化设计,可以成为你最好的创作伙伴,让你的文字焕发出耀眼的光芒!🌟

    Weaver家族全面超越通用语言模型

    相比此前的通用语言模型如GPT系列,Weaver在创意写作方面取得了突破性进展。🔥

    • 学习强大的写作能力:Weaver使用了大量高质量创作类语料进行预训练,比如书籍、小说、故事、文章等,让它深入学习人类写作风格和创意。
    • 生成更人性化文本:通过指令回译和专家标注优化模型参数,Weaver可以生成更富有创造力和人情味的文本,而不仅仅是机械的组词造句。
    • 支持多样化写作场景:涵盖虚构、非虚构、技术写作等不同领域,适用于创作故事、社交媒体文案、博客文章等。
    • 可个性化写作辅助:支持调整个人写作风格,辅助编辑润色,提高写作效率。
    • 集成外部知识:可以查询知识库,将外部信息融入创作内容中。
    • 生成长文本:支持流畅生成超长篇幅的文字内容。
    • 多语言支持:同时支持中文和英文两种语言的写作任务。

    可以说,Weaver为创意写作开辟了崭新境界!

    评估结果凸显Weaver的卓越表现

    Weaver是否真的如此出色?为了给出定论,研究人员进行了全面的评测。

    • 构建了WriteBench基准,在多种写作场景中对Weaver和其他通用语言模型进行了测试。
    • 采用GPT-4作为评估者,对模型生成的作品进行打分评价。
    • 组织了44位专业作家进行人类评估,对比Weaver和代表性模型的文章质量。
    • 进行用户研究,5位专业作家使用Weaver和GPT-4进行创作,比较他们的体验。

    结果表明,在创造力、风格传达、主题相关性等方面,Weaver均明显优于其他模型,尤其擅长产生富有创意且贴近人类风格的作品。用户研究也证实Weaver可以提高写作效率和质量。

    综上所述,Weaver堪称新时代AI创意写作的“救世主”,其卓越表现已得到多方验证!👍

    WawaWriter – 人机共创的未来写作体验

    除了强大的模型之外,研究人员还设计了WawaWriter平台,这是一种全新的人机协同创作系统。😃

    它将Weaver的能力发挥到极致,为使用者提供前所未有的写作体验:

    • 💬 支持自然语言交互,输入写作需求和创意,获取AI创作助手的即时反馈。
    • 🎨 提供个性化写作辅助,可以调整生成内容的风格和语气。
    • 🔍 连接外部知识库,自动检索相关信息并融入创作。
    • 📝 支持无限长文本生成,流畅组织段落和章节,自动进行智能推敲。
    • 🤝 极大提升人机协作效率,用户可以集中注意力进行创作。
    • 🔧 提供便捷的文本编辑和管理功能。

    可以预见,这种新型协同创作系统会彻底改变我们的创作方式。想想看,有了WawaWriter这样智能的AI助手,你的创作效率会提升几何倍,创作瓶颈和痛点将一扫而空!

    未来,写作或许将不再是一个孤独的过程,而是一个由人和AI共同完成的艺术创造。🤝 充满乐趣与可能!

    加入Weaver与WawaWriter,开创创作新纪元

    Weaver和WawaWriter无疑是创意写作领域的重磅产品,它们极大拓展了AI在辅助创作方面的应用前景。💡

    • 对于作家和内容创作者来说,这是提升创作力的强大工具。
    • 对于出版商和平台来说,这是拓展创意内容的重要途径。
    • 对于AI研究者来说,这开辟了语言模型个性化的新方向。
    • 对于所有热爱写作的人来说,这是实现创作梦的绝佳伙伴。

    我衷心期待Weaver和WawaWriter尽快与大众见面,让更多创作者受益,共同开启人机合作写作的新纪元!如果你也对此充满兴趣,欢迎在评论区分享你的想法!

    未来可期,创造无限!让我们继续期待AI为创意写作带来的更多惊喜吧!

  • Tuning Language Models by Proxy

    近年来,预训练语言模型在自然语言处理Tasks表现突出,但直接进行Fine-tuning往往需要大量计算资源。所以研究人员提出了一种非常巧妙的方法,可以在解码阶段进行模型微调,避免修改庞大模型的内部权重👍

    代理微调:无需进入模型内部就可定制化

    代理微调的核心思路是:

    • 选择一个小型的语言模型,进行任务专属的Fine-tuning,得到一个专家模型🧑‍🏫
    • 在运行大模型生成文本时,引入这个专家模型的输出,对大模型的词向量进行简单调整💪
    • 就像一个代理老师,在不进入班级的情况下,通过辅导学生来提高全班的水平📈

    这样,代理微调可以在解码阶段轻松地定制大型语言模型,无需直接访问复杂的内部结构。相比直接Fine-tuning,它更加高效和可控!

    实验验证:性能几乎赶超直接微调

    研究人员对代理微调进行了全面的评估:

    • 在任务型指令遵循方面,代理微调提高了大模型对指令的执行准确率,逼近直接微调的效果
    • 在代码生成任务上,代理微调也带来显著改进,有助于生成更精准的代码
    • 在问答、数学运算等具体任务上,代理微调同样产生强大的优化效果

    可以说,不入内部就能取得如此卓越的提升,代理微调可谓 bargain之选!

    展望:轻装上阵,微调之新方法

    代理微调为我们带来了巨大的启发:

    • 小型模型也可以在某些方面教会大模型,开启新的微调思路
    • 解码阶段的调控操作,提供了更精细的输出定制化手段
    • 避开内部细节,或许是未来模型调优的新方向

    相信随着理论与工程结合,语言模型的应用前景将更加广阔。让我们一起见证这个迸发火花的领域吧!

  • Deductive Closure Training of Language Models for Coherence, Accuracy, and Updatability

    最近读到一篇非常有意思的AI论文,提出了一种新的方法来提高语言模型的可靠性。这项技术被称为Deductive Closure Training(DCT),它采用了与众不同的训练方式,能够显著改善语言模型生成内容的准确性和一致性。那么这项技术是如何做到的呢?让我为大家详细介绍一下🧐:

    为何需要Deductive Closure Training

    目前的语言模型🌐存在以下问题:

    • 事实错误✖️:有时会生成自相矛盾或与事实不符的内容
    • 缺乏一致性❌:不同部分之间存在逻辑冲突
    • 难以更新➕:很难用新信息来更新模型

    这导致了语言模型生成的文本可靠性较差。为了解决这一难题,研究人员提出了DCT方法。

    Deductive Closure Training的技术原理🔧

    DCT的核心思路是,在训练过程中✏️,利用语言模型自己的推理能力🧠,来改进其生成内容的准确性和一致性。主要包含以下步骤:

    • 文档生成🚩:使用语言模型根据已有文档,生成更多相关文档
    • 一致性评估🔍:评估所有文档,找出逻辑上最可能成立的一致文档子集
    • 模型微调🔧:仅用一致的文档子集进行模型的参数调整

    通过这种方式,可以有效提升语言模型的事实性和逻辑一致性,无需额外的监督数据。

    DCT技术的实验验证🧪

    为了验证DCT的效果,论文进行了以下实验:

    • 事实验证:DCT可以提高模型判断事实正误的能力
    • 问答:DCT可以帮助模型更好地回答基于新信息的问题
    • 一致性检查:DCT能增强模型学习简单逻辑推理的能力

    结果表明,DCT技术可以显著改善语言模型的可靠性,在不同的场景和任务中都取得了进步。

    DCT技术的未来展望🔭

    尽管DCT已展示出巨大的潜力,但这项技术还有很多值得进一步探索的方向:

    • 更复杂的推理任务🎯
    • 优化种子文档的选择📑
    • 结合多样化的微调目标💡
    • 提高跨语言和跨领域泛化能力🌏
    • 增强模型的可解释性🔍
    • 关注技术的安全性和伦理性🛡
    • 与其他方法相结合👥

    我相信,随着相关研究的深入,DCT必将大幅提升语言模型的智能水平,使其生成的内容更加准确可靠。这项突破性技术给语言模型的发展带来了新的曙光。让我们一起期待DCT后续的研究进展吧!

  • AI技术的新突破:复旦研究团队大幅提升模型上下文理解能力

    当我们在浩瀚的信息海洋中航行时,AI技术的飞速发展无疑是我们的罗盘和风帆。最近,复旦大学和上海人工智能实验室的研究团队带来了一股劲风,他们的新发现让AI模型在理解长篇上下文方面能力大幅跃升,这对自然语言处理(NLP)领域可谓是一场革命。

    💡RoPE位置编码的魔法

    首先,我们得知道一个概念——RoPE(Rotary Position Embedding)。简而言之,位置编码就是在AI模型中嵌入位置信息的一种技术,而RoPE则是一种特殊的位置编码方式。它透过旋转的方式,将位置信息编入模型。你可以想象成,每一个单词都通过旋转一个角度来表示其在句子中的位置,这样模型就能理解单词之间的顺序关系。

    🚀上下文长度暴涨至100万tokens

    复旦的研究团队发现,通过微调RoPE位置编码中的一个超参数——旋转角底数(base),可以显著提升模型的上下文长度。简单来说,就是让AI能够一口气理解长达100万tokens(语言处理中的基本单位)的内容。想象一下,这就好比原本阅读能力仅限于一篇短文的AI,突然能够流畅地阅读整部《红楼梦》。

    🔍RoPE外推缩放法则

    研究团队还提出了一套RoPE外推的缩放法则。这套法则能够帮助我们预测模型在不同长度的文本上的表现,并据此调整旋转角底数来提升模型的外推能力。这就像是为AI模型装上了一个可以根据不同海域调整的舵,无论是平静湖面还是波涛汹涌的大海,它都能稳稳地航行。

    🌟LLaMA2模型的革新

    复旦的研究不仅理论上让人兴奋,还在实践中展现了成果。他们的这项技术被用于LLaMA2模型,将其上下文长度从原本的1.6万tokens扩展到了100万tokens,这为处理更复杂的语言任务提供了可能。

    📚更多潜力的解锁

    这项技术的潜力是巨大的。在自然语言处理领域,无论是机器翻译、文本摘要还是问答系统,长篇上下文的理解能力都是关键。复旦研究团队的这一突破,为我们打开了新的大门,让AI在理解和生成自然语言方面,更加像人类。

    🔗研究资源链接

    对这项技术感兴趣的朋友,可以通过以下链接进一步探索:

  • FP8-LM: Training FP8 Large Language Models 探索FP8低精度训练:大型语言模型(LLMs)的新篇章

    这篇论文探索了使用8位浮点数(FP8)来有效训练大型语言模型(LLM)。论文的主要贡献和要点总结如下:

    1. 提出了一个新的FP8混合精度训练框架,可以分阶段地引入8位梯度、优化器状态和分布式训练,逐步发挥FP8的优势,降低训练成本。
    2. 在这个框架下,实现了8位梯度交流、8位优化器和8位并行训练。具体来说:
    • 为FP8梯度交流设计了自动缩放技术,解决了低位交流中的上下溢问题。
    • 实现了FP8优化器,通过精度解耦找到哪些变量更适合低精度表达。
    • 在张量并行、流水线并行和序列并行中支持FP8,降低激活传递的通信量。
    1. 在7B到175B参数规模的GPT模型上验证了该FP8训练方案的效果。结果显示,相比BF16训练,FP8训练可以显著降低GPU内存占用(29%~39%)、权重相关通信量(63%~65%),并提高吞吐量。模型性能不受影响。
    2. 将FP8训练应用到GPT模型的微调上,包括教学调整和强化学习。结果同样展现出计算和内存上的节约。
    3. 通过大量的分析实验对FP8训练的设计选择进行了验证,为后续研究提供了指导性结论。
    4. 本文是第一个将FP8计算、存储和通信全面渗透到大模型训练 entire pipeline 的工作,可视为推动下一代低精度训练系统的重要一步。

    本文对利用FP8进行大规模语言模型的高效低精度训练做出了重要探索,在减少训练成本方面展现出令人鼓舞的潜力。论文的贡献具有重要的理论和实践价值。