作者: C3P00

  • 图生文BLIP-2:图生文大语言图像预训练引导

    大家好!今天我要和大家分享一个名为BLIP-2的最新模型,它在网络上引起了轰动。这个模型不仅具备基本的”看图说话”功能,还可以写情诗、讲解剧情、设计图片中对象的对话等等。简直就是一位多才多艺的AI!举个例子,当你在网上看到一张诱人的美食图片时,只需将图片发送给BLIP-2,它就能立即识别出需要的食材和烹饪步骤。甚至连图片中隐藏的一些细节都能一清二楚地”看”出来。比如,当被问到如何从一幅倒着的房子的图片中离开,BLIP-2的回答是:侧面不是有滑梯嘛!

    BLIP-2是一个全新的AI模型,它的全称是”Bootstrapping Language-Image Pre-training 2″,目前已经开源。与以往的研究不同,BLIP-2采用了一种通用的预训练框架,因此可以灵活地与各种语言模型进行对接。这项研究由Salesforce Research团队进行,其中之一的Steven Hoi表示,BLIP-2未来将成为”多模态版ChatGPT”。

    BLIP-2的第一作者是Junnan Li,他也是一年前发布的BLIP项目的主要作者。目前,他是Salesforce亚洲研究院的高级研究科学家。他本科毕业于香港大学,博士毕业于新加坡国立大学。他的研究领域非常广泛,包括自我监督学习、半监督学习、弱监督学习以及视觉-语言相关的研究。

    如果你对BLIP-2感兴趣,以下是它的论文链接和GitHub链接,大家可以自行查阅:
    论文链接:BLIP-2论文
    GitHub链接:BLIP-2 GitHub

    参考链接:[1] 推特链接1
    [2] 推特链接2

    希望大家对BLIP-2感到兴奋!这个模型的优秀表现真的让人惊叹,它为我们展示了语言和图像之间的无限可能性。让我们共同期待BLIP-2的未来发展!💪🤖

  • 无需任何训练,加速扩散模型的DeepCache开源!

    今天我要为大家讲解一个最近在图像生成领域持续热门的话题 – 扩散模型及其加速方法。内容安排如下:

    第一部分 什么是扩散模型

    第二部分 扩散模型的问题与DeepCache方法

    第三部分 DeepCache的实现原理和策略

    第四部分 DeepCache的实验结果

    第五部分 DeepCache的代码实现

    下面让我们一一进入这些内容。

    第一部分 什么是扩散模型

    扩散模型是一类基于深度神经网络的生成模型,可以生成逼真的图像。它的基本思路是,从一张随机噪声图像开始,通过多步推理逐步去除图像中的噪声,合成出清晰的图片。代表模型有Stable Diffusion等。

    第二部分 扩散模型的问题与DeepCache方法

    扩散模型需要进行多步计算,每一步都要运行完整的模型去噪,非常耗时。而在邻近去噪步骤中,模型深层特征变化很小。这启发了DeepCache方法。

    DeepCache的核心思路是重用相似的深层特征,只更新浅层特征。具体的是,每隔若干步进行一次完整推理来更新深层特征缓存,中间步骤只运行浅层网络,直接使用缓存的深层特征,以跳过大部分计算。

    第三部分 DeepCache的实现原理和策略

    DeepCache利用了U型网络的跳过连接结构。在下采样和上采样中,通过跳过连接传递更多信息。作者发现,上采样时深层特征变化很小,主要采集了全局信息。所以可以重用深层特征缓存,只更新浅层特征。

    DeepCache提出了均匀缓存和非均匀缓存两种策略。均匀缓存是固定每N步全网推理一次。非均匀缓存根据层特征变化情况动态调整不同层的缓存频率。

    第四部分 DeepCache的实验结果

    作者在多个模型上验证了DeepCache,包括Stable Diffusion、LDM和DDPM,都取得了显著的加速效果。仅用简单的均匀缓存,就可使Stable Diffusion加速2.3倍,几乎无损。

    第五部分 DeepCache的代码实现

    DeepCache的实现很简单,只需要用它提供的模型替换原始模型,接口调用方式不变,就可以实现加速效果。

    以上是我对DeepCache方法的全面概述。它无需训练就可以轻松实现扩散模型的显著加速,是一个非常有价值的工作。更多细节我们可以在讨论时继续深入。如果有任何问题,欢迎同学们积极提出,我们一起讨论。

    https://github.com/horseee/DeepCache

人生梦想 - 关注前沿的计算机技术 acejoy.com 🐾 步子哥の博客 🐾 背多分论坛 🐾 借一步网
Page Stats: PV: 792 | UV: 465
Last updated: 2025-05-15 21:06:58
沪ICP备2024052574号-1